

POWER QUALITY AND RENEWABLE TESTING

-

and a state of the

12000

www.neo-messtechnik.com

Electrical measurement instruments are playing an essential role in development of all industries.

We want to contribute by providing high-quality products for test and measurement and by providing best possible services.

TABLE OF CONTENTS

INTRODUCTION	Page
Evolution of the Power Grid	4
Future of Power Quality	5
Applications	6
MOBILE POWER QUALITY ANALYZERS	8
PQA 8000	10
PQA 7000	20
POWER QUALITY MONITORS	28
PQM 100	30
PQM 200	34
POWER QUALITY SYSTEM SOFTWARE	41
PQM SCADA	
Energy Meter	
WAMS	
SOLAR / PV TESTSYSTEMS	47
PV Master 70	50
PV Master 80	51
ACCESSORIES	54
Current Sensors	56
Voltage Sensors	60
Other Accessories	61
MEASUREMENT SERVICES	62
ABOUT NEO MESSTECHNIK	70
Company Profile	
Quality	
Social Responsibility	

Contact

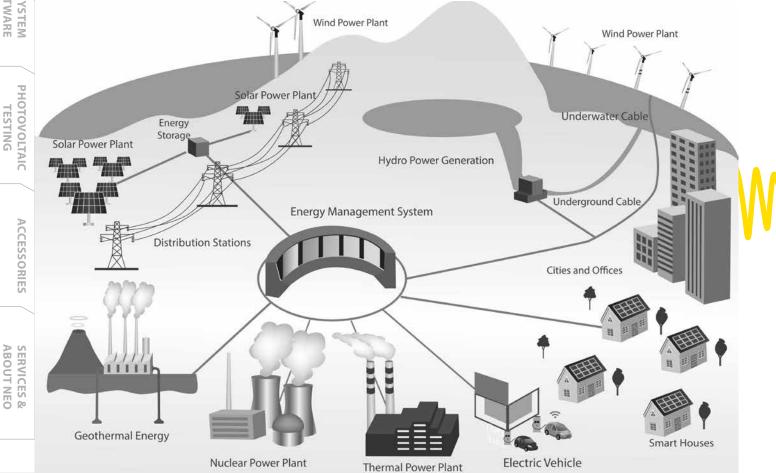
EVOLUTION OF THE POWER GRID

From Power Generation via Transmission and Distribution Grids to changes in electrical equipment and energy consumption, the electrical power grid is constantly evolving.

Changes in **Power Generation**:

- Large conventional plants are being replaced with a high number of small units (connected to Low-Voltage grids)
- There is a shift to non-dispatchable renewable energy
- Synchronous machines are being replaced by power-electronic interfaces

Changes in Transmission and Distribution:


- Advancements are being made in Power Electronic Equipment (Filters, STATCOM, etc.)
- Two-Way Power Flow are being introduced due to distributed generation
- HV AC cables and HVDC systems are being re-innovated
- There is an increased use in Power-Line communication

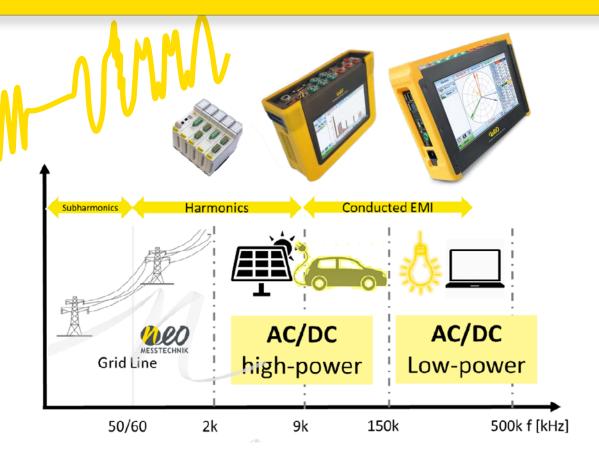
Changes in Consumption:

- Energy-efficient device usage is increasing
- There is an overwhelming proliferation of small devices on the grid
- There is an increase in Electric-Vehicles and Heat pumps
- There is almost a complete shift to active Power Electronics (motors, pumps, lighting,...)

These changes require new technologies such as Microgrids, Demand Side management (DSM), Distributed Generation (DER), Distributed control (U, P), Feeder Reconfiguration, etc.

The decrease in short-circuit power and destabilization of the grid require that the distributed generation units also need to provide services to the power grid. This services are defined in Grid Codes (international and national regulations).

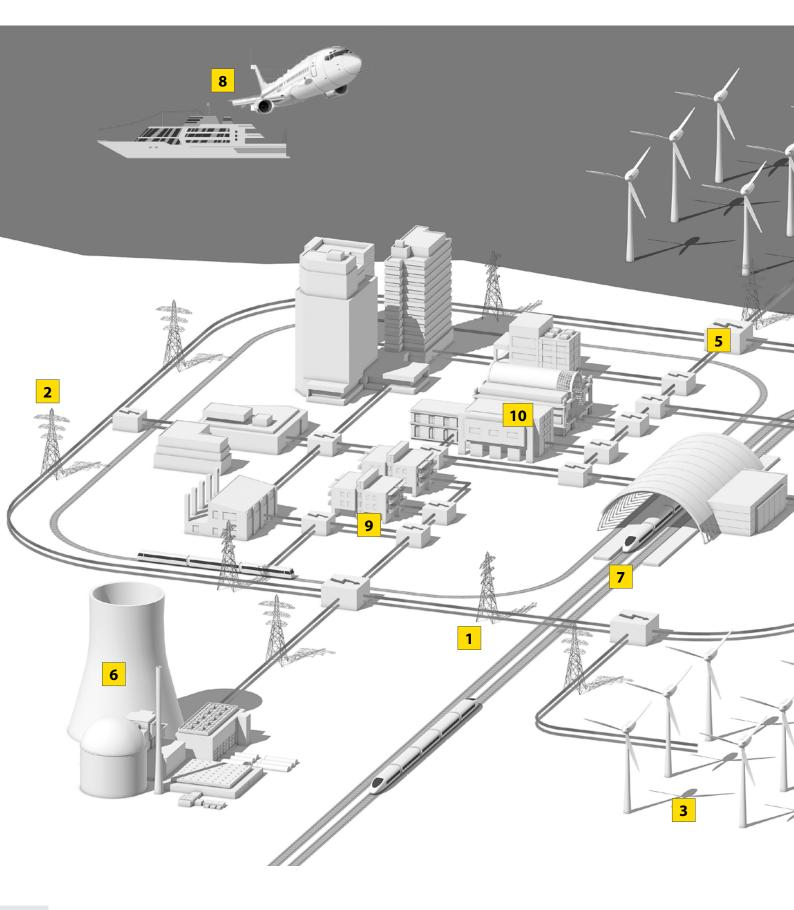
FUTURE OF POWER QUALITY



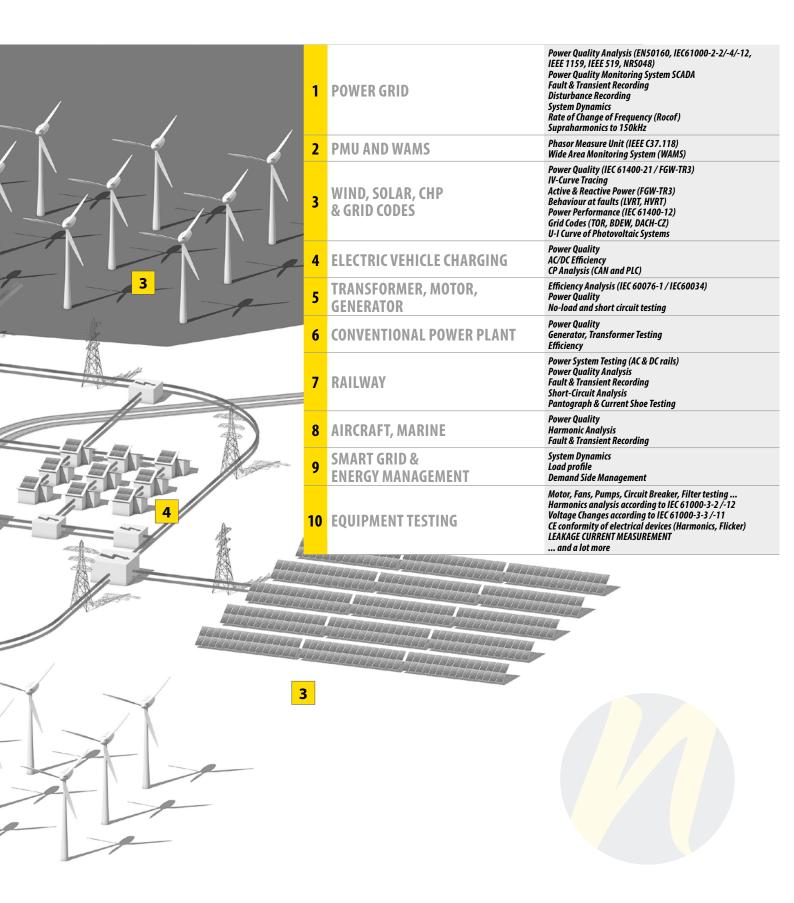
Classical Power Quality Analysis according to EN50160, including reports defined by the measurements of Voltage variations, Frequency, Harmonics (50th order), Flicker and Unbalance, are no longer sufficient. Power Quality Analysis must adapt to the ever-evolving power grid, which requires additional measurements such as:

- 🗹 Supraharmonics up to 150 kHz / 500kHz for voltage and current
- Disturbance Recording (1/2 period)
- 🎻 Phase Angle jump recording
- Fast Frequency changes (1/2 period)
- 🇹 Symmetrical components Analysis
- 🖌 Resonances / Oscillations measurement
- Fast Switching processes
- 🗹 DC offset
- 🗹 Subharmonics
- 🍯 Grid Impedance Measurement up to 150 kHz / 10 MHz
- PLC interference
- 🗹 PQ Spreading Analysis (e.g. connection of multiple EV Chargers of same type)
- 🗹 Analysis of PQ mitigation methods (e.g. lowering Harmonics can increase the level of Supraharmonics)

The NEO Advantage


NEO Messtechnik instruments are engineered and designed to fulfill all of these requirements. In addition to classical PQ Analysis and Reporting according to international standards (EN50160), it is possible to measure *Suprharmonic currents and voltages*, to detect any *Waveform deviation* as well as any *Disturbance* (1/2 period based) or *Dynamic processes* in the electrical power grid (PMU).

ACCESSORIES



APPLICATIONS

APPLICATIONS

MOBILE POWER QUALITY

PQA 8000

Highlights Hardware Highlights Software Highlights Power Quality Class A++ NEO Sensor Calibration Instrument Options Specifications Accessories

PQA 7000

Seite 20

Page 10

Highlights Hardware Highlights Software Highlights Power Quality Klasse A++

APPLICATIONS

Page 18 / 27

PQ Class A EN50160 / IEC61000-2-2/-4/-12 IEEE 519 / NRS048 Disturbance Record Transients Supraharmonics Photovoltaic / PV Tester Wind Power Electric Vehicle Charging Station

POWER QUALITY ANALYZER

PQA 8000

Power Quality

Harmonics, THD Supraharmonics 500kHz Unbalance etc.

System Dynamics

Phasor Measure Unit (PMU), Rate of Change of Frequency (RoCoF), WAMS, etc.

Transients

1/2 period values, Phase Angle jumps, Resonances, Switching etc.

Power

Active, reactive, apparent power, PF, harmonic power, energy, etc.

HIGH ACCURACY HIGH SAMPLING RATE HIGH RESOLUTION HIGH DYNAMIC RANGE HIGH SAFETY CATEGORY DATA STORAGE

0.05% 124kS/s or 1MS/s 18bit 0.5mA to 150kA CAT IV 600V up to 1TB SSD

Batterie	Display
4h	10.1 inch
90 Wh	Multi-Touch
Isolation	Standards

HIGHLIGHTS

SMART TOUCH

The large 10.1 inch full-HD Smart Touch display responds immediately without any delay with intuitive operation like on a mobile phone.

MOBILE OPERATION

The integrated battery pack allows an operating time of up to 4 hours of operation. 5 LEDs indicate the remaining battery capacity. There is no need for an external power supply or special connectors... plug and play.

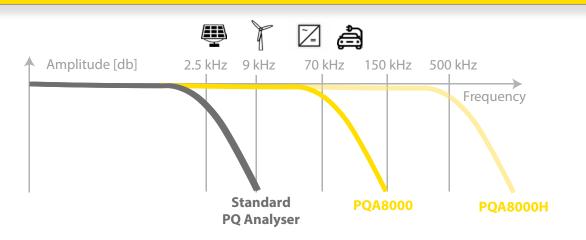
GPS

Integrated GPS enables high-precision time measurements & synchronization, which is ideal for PMU applications.

LARGE SSD

The instrument is equipped with two SSD disks. One is dedicated for the OS and application software, and the other one is equipped for data storage (up to 1 TB).

INTERFACES


The instrument provides an easy integration with other analog and digital signals such as temperature. The interfaces include USB 3.0, TCP/IP, LAN, Wifi, Bluetooth, RS232, Modbus, 104, DIO, and CAN.

SENSOR SUPPLY

The instrument can provide excitation for your current sensors, and there is no need for batteries or external power supplies.

SUPRAHARMONICS UP TO 500 kHZ FOR VOLTAGE AND CURRENT

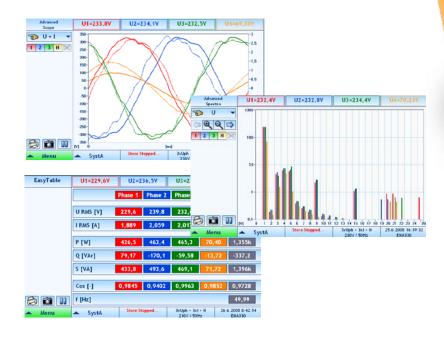
Conventional PQ Analyzers, even if they are Class A certified, are not sufficient for modern measurement applications. We use the best available components to ensure the highest safety category and also the highest accuracy. NEO instruments offer high bandwidth (up to 1 MHz) and correct the frequency dependent behavior of current & voltage sensors as well as integrated electronics to achieve the best possible measurement results. *THE REFERENCE INSRUMENT*

ABOUT NEO

SOFTWARE

SETUP

1


The instrument has a clear structure that shows schematics with explanations.

MEASURE

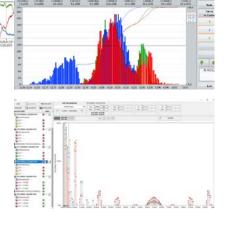
During measurements the user can define widgets such as Scopes, Vector Scopes, Harmonic FFTs, Tables, and Recorders.

TRULY INTUITIVE

Intuitive Measurement menus: Cleary structured and explicit menus

SERVICES & ABOUT NEO

HIGHLIGHTS


6 🛍 💵

ANALYZE

Sophisticated functions include PQ Data, Transients, Disturbances, and Alarms.

Lo - Max Auto - Max

Lin - Max sulliss Auto - Max - 2014

6

REPORT

The instrument can automatically generate reports and professional documentation. The user can create reports that include all relevant information (location, comments, company logo, etc) directly on-site or during post processing. PDF reports that are saved on the instrument are always available and can be shared directly via email.

Report EN50160 Database Remote **SCADA** Connection

OTHER PROGRAMS

The instrument uses Microsoft Windows© as the operating system. Programs such as Microsoft Excel, Word or Matlab can be added as well as Email messaging services.

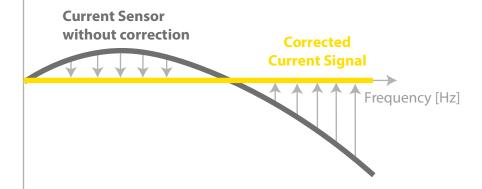
EXPORT

5

Data can be exported into CSV, XLS, PDF, Comtrade, and PQDiff.

NEO SENSOR CALIBRATION

HIGHEST PRECISION


The NEO way of Sensor Integration

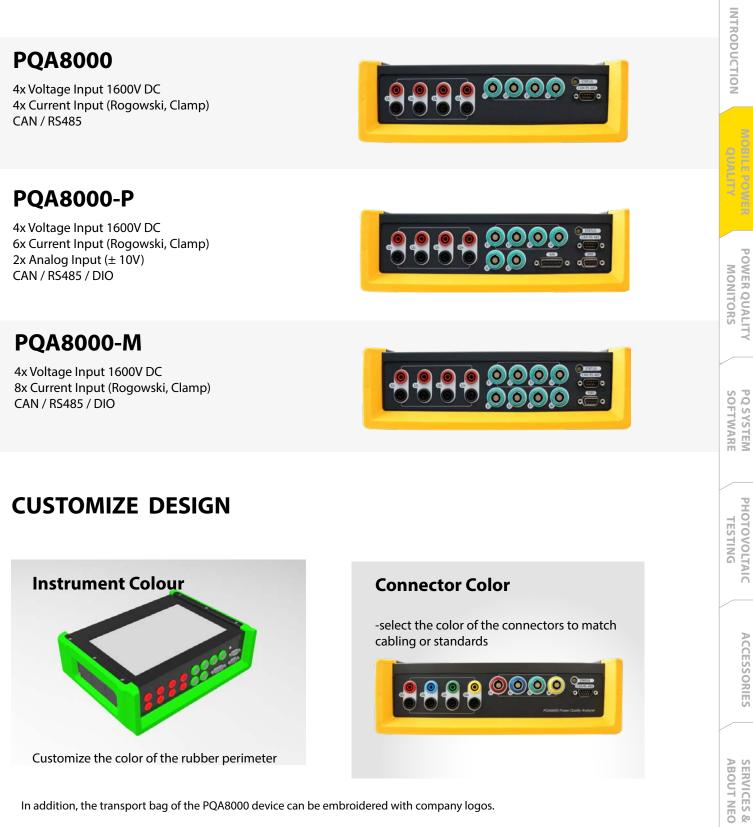
All current sensors offered by NEO Messtechnik are industry proven for different applications. We use and improve on the best available sensors in the market.

1) FREQUENCY DEPENDENT CALIBRATION

The NEO sensor integration calibrates each sensor over a wide frequency bandwidth and corrects frequency dependent phase shift and amplitude damping. This enables high precision from DC to high-frequency measurements.

2) MEASUREMENT RANGE DEPENDENT CALIBRATION

In addition, the sensors will calibrated for each measurement range using multiple points. The calibration will typically cover points from 1% to 100% of the nominal measurement range. This will improve the accuracy and precision, especially at low current (e.g., 1% of nominal measurement range).


All sensors will be delivered with a standard calibration, which improves the accuracy compared to nominal specifications, whereas the NEO calibration will be performed on each individual sensor and needs to be ordered separately.

ABOUT NEO

INSTRUMENT OPTIONS

In addition, the transport bag of the PQA8000 device can be embroidered with company logos.

1 15

SPECIFICATIONS & ACCESSORIES

GENERAL SPECIFICATIONS

PC	Microsoft® Windows 10 IOT(64 bit) Intel® Quad Core Processor and 8GB RAM Locked OS for reliable operation Multilanguage Support		
Storage	256GB SSD for OS and application software 256GB SSD dedicated for Data storage		
Display	10.1 inch Capacitive Multi-Touch TFT LCD Sunlight Readable / 800cd		
Battery	Li-lon Battery 90Wh up to 4h operation		
Power Supply	115V / 230V AC		
Interfaces	3x USB, 1x Ethernet, WiFi, 1x HDMI		
Dimensions	298 x 225 x 95 mm 11.8 x 8.8 x 3.7 inch		
Weight	4kg / 8.8pound		
Temperature Range	Operating: 0 to 60°C (32°F to 140°F) Storage: -20 to 80°C (-4°F to 176°F)		
IP Class	IP2X		
Accessories	Transport Bag and Keyboard included		
Standards & Certification	IEC61010-1 (2011) / IEC61010-2-030 / IEC 61000-4-3 / IEC 61000-4-4 / LVD Directive 2014 / EMC Directive 2014/ Rohs Directive 2015/ EN 61000-3-2 / EN 61000-3-3 / EN 61326-1 / EN 55011 +A1, Class A		

OPTIONS AND A		
SSD Upgrade	Upgrade to 512GB or 1TB data storage	
GPS	Integrated GPS receiver and GPS mouse	
GSM	Integrated Modem for telecommunication	
DC Power	DC Power supply input +9V +36V DC	
Dust Cover	Protect PQA8000 instrument in tough environments	
Transport Case	Ruggedized Pelican-Case (IP67), with foamed insert adapted for the measurement instrument and pullout handle	
color Code	Color code for all voltage and current inputs	
Temperature Sensor	Thermocouple Type K temperature sensor on DSUB15 input	
Radiation Sensor	Pyranometer Sensor on DSUB15 input	
Current Sensor	See Chapter Accessories	a a
Test Leads	See Chapter Accessories	

SPECIFICATIONS

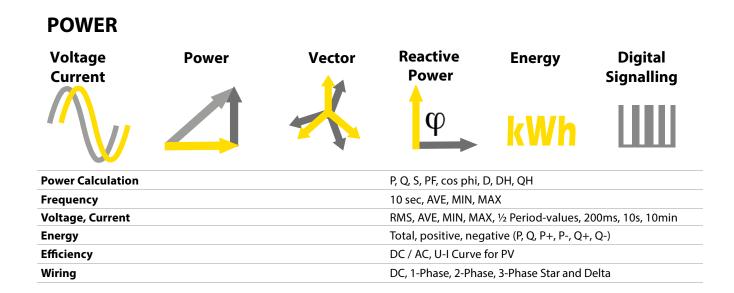
INTRODUCTION

VOLTAGE INPUTS

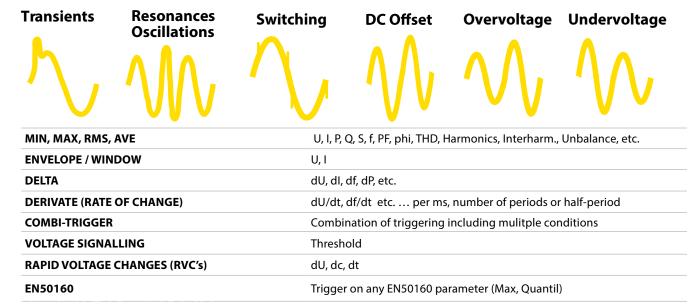
Inputs	4x
Range	Standard: 1600V/ 800V MV-Version: 600V / 20V
Accuracy	0.05% f.s.
Isolation	6kV isolation
Safety	CAT III 1000V CAT IV 600V
Impedance	10 MΩ

CURRENT INPUTS		
Inputs	PQA8000: 4x PQA8000-P: 6x PQA8000-M: 8x	
Accuracy	0.05% f.s.	
Туре	Clamp or Rogowski	
Instrument Ranges Clamp	2mV to 10V (15x Ranges)	
Integrator Rogowski Range	1A to 300kA	
Additional Analog Inputs (AIN)	1V, 2V, 5V, 10 V	
Sensor Supply	±15V / 9V	
TEDS	Automatic Sensor Detection*	
Impedance	10 MΩ	

ANALOG DIGITAL CONVERSION (A/D)


Sampling Rate /	PQA8000:	124 kS/s / 24bit
Resolution	PQA8000H:	1 MS/s / 18bit
Filters	Analogue and Automatic An	l Digital ti-Aliasing Filter

DIGITAL I/O & INTERFACES


Digital In/Out	Adjustable Trigger max. 350V
CAN, RS485	Selectable Termination

POWER QUALITY

WAVEFORM & TRANSIENTS

COMPLYING STANDARDS

 POWER QUALITY, HARMONICS, FLICKER:

 IEC61000-4-30 Ed. 3 Class A / IEC61000-4-7 / IEC61000-4-15 /

 IEC62586-2 Ed. 2 / IEC62586-1

 PUBLIC GRID, RAILWAY AND INDUSTRY

 EN50160 / EN50163 / IEC61000-2-2 / IEC61000-2-4 (Class 1; 2; 3) /

 IEEE519 / IEEE 1159 / IEC61000-2-12 / NRS048

 WIND POWER, RENEWABLES AND GRID CODES

 IEC61400-21 / IEC61400-12 / FGW-TR3 / VDE N-4105 / VDE N-4100 /

 VDE N-4110 / D-A-CH-CZ / BDEW / ROCOF / IEEE C37.118-2005 (PMU)

 MOTORS, TRANSFORMERS AND ELECTRICAL EQUIPMENT

 IEC60034 / IEC 60076-1 / IEC61000-3-2 / IEC61000-3-3 / IEC61000-3-11 / IEC61000-3-12

ABOUT NEO

CLASS A++

POWER QUALITY Harmonics Interharmonics Supraharmonic 150kHz	S Flicker Unbalance Voltage Variations	
according to IEC 61000-4-30 Ed.3 and IEC 62586		LITY
Harmonics (Voltage, Current, Phi, Power)	Class A	
Interharmonics	Class A	
THD U, THD I	Class A	PO
Higher Frequencies (200Hz band)	2 - 9 kHz (can be calculated from 0 to definable upper limit)	WER QUAL MONITORS
Higher Frequencies (2000Hz band)	8 - 150 kHz / 500 kHz for voltage and current (PQA 8000H)	QU
Symmetrical Components & Unbalance (Pos-, Neg- and Zero Sequence)	Class A	POWER QUALITY MONITORS
Rapid Voltage Changes	Class A	
Flicker (PST, PLT, Pinst)	Class A	
Voltage Events (dip, swell, interruption – time, extrema, length)	Class A	PQ SYSTEM SOFTWARE
Frequency	10 sec, AVE, MIN, MAX	STE
Voltage, Current	RMS, AVE, MIN, MAX, ½ Period-values, 200ms, 10s, 10min	ĩΞ
Time Synchronisation	Class A	
DISTURBANCES AND SYSTEM DYNAM	MICS	PHOTOVOLTAIC TESTING
Disturbances Frequency Phase Angle 1/2 period RoCoF Jumps	PMU Grid Symmetrical Impedance Components	IG

Disturbances 1/2 period	Frequency RoCoF	Phase Angle Jumps	PMU	Grid Impedance	Symmetrical Components	G ACCESS
1/2 PERIOD TRIGGER		U, I, P,	Q, S, f, PF, phi, TH	ID, Harmonics, Interhari	m., Unbalance, etc.	ORIES
PHASE ANGLE TRIGGER	R	phi				
SYMMETRICAL COMPO	NENTS	Pos., N	leg., Zerosequen	ce		
RATE OF CHANGE FREQ	QUENCY (ROCOF)	df/dt				D S
Phasor Measure Unit (F according to IEEE C37.11	-	Angle Timest	Error amp Accuracy	0.01% (typ.) 0.003°(typ) 0.1 μs open PDC format / Offlin	ne storage possible	ABOUT NEO
🗸 con	mpounded	TURES INCLUE trigger setting triggers and p)E Js			

POWER QUALITY ANALYZER

PQA 7000

Harmonics, THD Supraharmonics, Symmetrical components etc.

Phasor Measure Unit (PMU), Rate of Change of Frequency (RoCoF), WAMS, etc.

1/2 period values, Phase Angle jumps, Resonances, Switching etc.

Active, reactive, apparent power, PF, harmonic power, energy, etc.

HIGH ACCURACY HIGH SAMPLING RATE HIGH RESOLUTION HIGH DYNAMIC RANGE HIGH SAFETY CATEGORY DATA STORAGE

0.05% 48 kS/s 24bit 0.5mA to 150kA CAT IV 600V up to 256 GB

Standards IEC61000-4-30 Class A

HIGHLIGHTS

SMART TOUCH

The 7 inch Smart Touch display responds immediately without any delay with intuitive operation like on a mobile phone.

MOBILE OPERATION

The integrated battery pack allows an operating time of up to 6 hours of operation. 5 LEDs indicate the remaining battery capacity. There is no need for an external power supply or special connectors... plug and play.

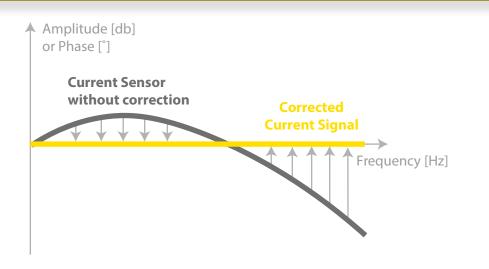
GPS

Integrated GPS enables high-precision time measurements & synchronization, which is ideal for PMU applications.

STORAGE

The instrument offers an internal memory of 32 GB which can be extended up to 256GB. The storage can further be increased by a USB disk.

INTERFACES


The instrument provides an easy integration with other analog and digital signals such as temperature. The interfaces include USB 3.0, TCP/IP, LAN, Wifi, Bluetooth, RS232, Modbus, 104, DI, and CAN.

SENSOR SUPPLY

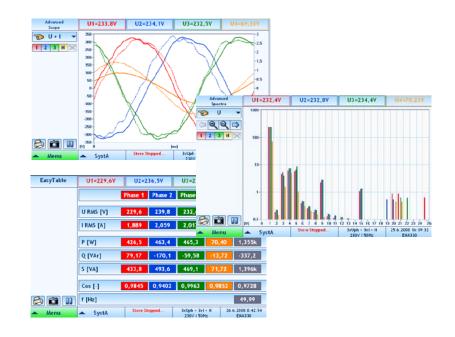
The instrument can provide excitation for your current sensors, and there is no need for batteries or external power supplies.

HIGHEST ACCURACY

The NEO sensor integration calibrates each sensor over a wide frequency bandwidth and corrects frequency dependent phase shift and amplitude damping. In addition, the sensors will calibrated for each measurement range using multiple points (1% to 100%). This unique technology improves the performance of each sensor and ensures highest accurate measurement results.

SOFTWARE

SETUP


1

The instrument has a clear structure that shows schematics with explanations.

MEASURE 2

During measurements the user can define widgets such as Scopes, Vector Scopes, Harmonic FFTs, Tables, and Recorders.

TRULY INTUITIVE

Intuitive Measurement menus: Cleary structured and explicit menus

POWER QUALITY MONITORS

HIGHLIGHTS

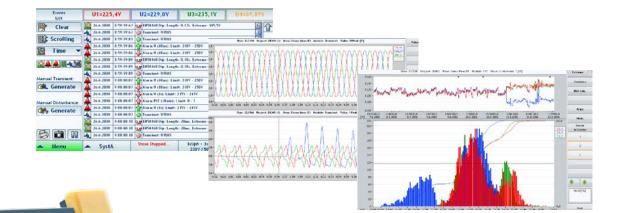
1200

U1=227,2V

U2=230.4

SystA

5


EXPORT

Data can be exported into CSV,

XLS, PDF, Comtrade, and PQDiff.

ANALYZE

Sophisticated functions include PQ Data, Transients, Disturbances, and Alarms.

6

REPORT

The instrument can automatically generate reports and professional documentation. The user can create reports that include all relevant information (location, comments, company logo, etc) directly on-site or during post processing. PDF reports that are saved on the instrument are always available and can be shared directly via email.

Remote Database **SCADA** Connection

OTHER PROGRAMS

The instrument uses Microsoft Windows© as the operating system. Programs such as Microsoft Excel, Word or Matlab can be added as well as Email messaging services.

INTRODUCTION

POWER QUALITY MONITORS

HARDWARE

GENERAL SPECIFICATIONS

РС	Microsoft® Windows 10 IOT(64 bit) Intel® Quad Core Processor and 4GB RAM Multilanguage Support		
Storage	32GB		
Display	7 inch Capacitive Multi-Touch TFT LCD Sunlight Readable		
Battery	Li-lon Battery 80Wh up to 6h operation		
Power Supply	10-30 V DC		
Interfaces	2x USB, 1x Ethernet, WiFi		
Dimensions	250 x 190 x 80 mm 9.84 x 7.5 x 3.2 inch		
Weight	2,3kg / 5 pound		
Temperature Range	Operating: 0 to 60°C (32°F to 140°F) Storage: -20 to 80°C (-4°F to 176°F)		
IP Class	IP2X		
Accessories	Transport Bag and Keyboard included		
Standards & Certification	IEC61010-1 (2011) / IEC61010-2-030 / IEC 61000-4- 3 / IEC 61000-4-4 / LVD Directive 2014 / EMC Direc- tive 2014/ Rohs Directive 2015/ EN 61000-3-2 / EN 61000-3-3 / EN 61326-1 / EN 55011 +A1, Class A		

HIGHLIGHTS

VOLTAGE INPUTS

4x
1600V/ 800V
0.05% f.s.
6kV isolation
CAT III 1000V CAT IV 600V
10 ΜΩ

CURRENT INPUTS		
Inputs	5x	
Accuracy	0.05% f.s.	
Туре	Clamp or Rogowski	
Instrument Ranges Clamp	2mV to 10V (15x Ranges)	
Integrator Rogowski Range	1A to 300kA	
Sensor Supply	±15V	
TEDS	Automatic Sensor Detection*	
Impedance	10 MΩ	

ANALOG DIGITAL CONVERSION (A/D)		
Sampling Rate	48 kS/s	
Resolution	24 bit	
Filters	Analogue and Digital Automatic Anti-Aliasing Filter	

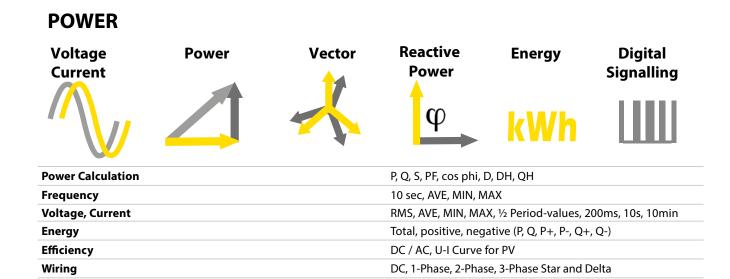
DIGITAL IN & INTERFACES

Digital In	Adjustable Trigger
CAN, RS485	Selectable Termination

TESTING

INTRODUCTION

POWER QUALITY MONITORS


PQ SYSTEM SOFTWARE

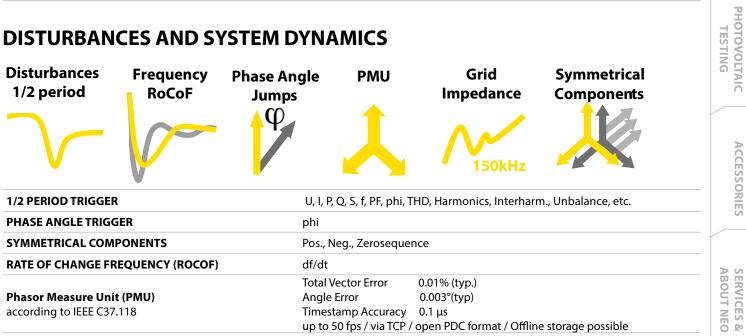
OPTIONS AND ACCESSORIES

		0
Storage Upgrade	Upgrade to 256 GB data storage	
GPS	Integrated GPS receiver and GPS mouse	
Transport Case	Ruggedized Pelican-Case (IP67), with foamed insert adapted for the measurement instrument and pullout handle	
Color Code	Color code for all voltage and current inputs	
Current Sensor	See Chapter Accessories	
Test Leads	See Chapter Accessories	

POWER QUALITY

WAVEFORM & TRANSIENTS

	illationen	Schaltvorgä	nge	DC Offset	Überspannung	Unterspannung
MIN, MAX, RMS, AVE		L	J, I, P, Q,	S, f, PF, phi, THD,	Harmonics, Interharm.,	Unbalance, etc.
ENVELOPE / WINDOW		U	, I			
DELTA		d	U, dI, df,	dP, etc.		
DERIVATE (RATE OF CH	ANGE)	d	U/dt, df/	/dt etc per m	ns, number of periods or	half-period
COMBI-TRIGGER		C	ombina	tion of triggering	g including mulitple cor	nditions
VOLTAGE SIGNALLING		TI	hreshold	ł		
RAPID VOLTAGE CHANC	GES (RVC's)	d	U, dc, dt			
EN50160		Ті	rigger o	n any EN50160 p	oarameter (Max, Quantil)


COMPLYING STANDARDS

POWER QUALITY, HARMONICS, FLICKER: IEC61000-4-30 Ed. 3 Class A / IEC61000-4-7 / IEC61000-4-15 / IEC62586-2 Ed. 2 / IEC62586-1 PUBLIC GRID, RAILWAY AND INDUSTRY EN50160 / EN50163 / IEC61000-2-2 / IEC61000-2-4 (Class 1; 2; 3) / IEEE519 / IEEE 1159 / IEC61000-2-12 / NRS048 WIND POWER, RENEWABLES AND GRID CODES IEC61400-21 / IEC61400-12 / FGW-TR3 / VDE N-4105 / VDE N-4100 / VDE N-4110 / D-A-CH-CZ / BDEW / ROCOF / IEEE C37.118-2005 (PMU) MOTORS, TRANSFORMERS AND ELECTRICAL EQUIPMENT IEC60034 / IEC 60076-1 / IEC61000-3-2 / IEC61000-3-3 / IEC61000-3-11 / IEC61000-3-12

CLASS A++

Flicker Unbalance Voltage Variations	INTRODUCTION
	QUAL
Class A	POWER
Class A	
Class A	PO
2 - 9 kHz (can be calculated from 0 to definable upper limit)	
20 kHz for voltage and current	MONITORS
Class A	MONITORS
Class A	
Class A	
Class A	PQ SYSTEM SOFTWARE
10 sec, AVE, MIN, MAX	YSTE
RMS, AVE, MIN, MAX, ½ Period-values, 200ms, 10s, 10min	ARE
Class A	
	Class A Class A Class A Class A 2 - 9 kHz (can be calculated from 0 to definable upper limit) 20 kHz for voltage and current Class A Class A Class A Class A Class A Class A Class A Class A Class A Class A


up to 50 fps / via TCP / open PDC format / Offline storage possible

ADDITIONAL FEATURES INCLUDE

🖌 compounded trigger settings

definable pre-triggers and post-time extensions

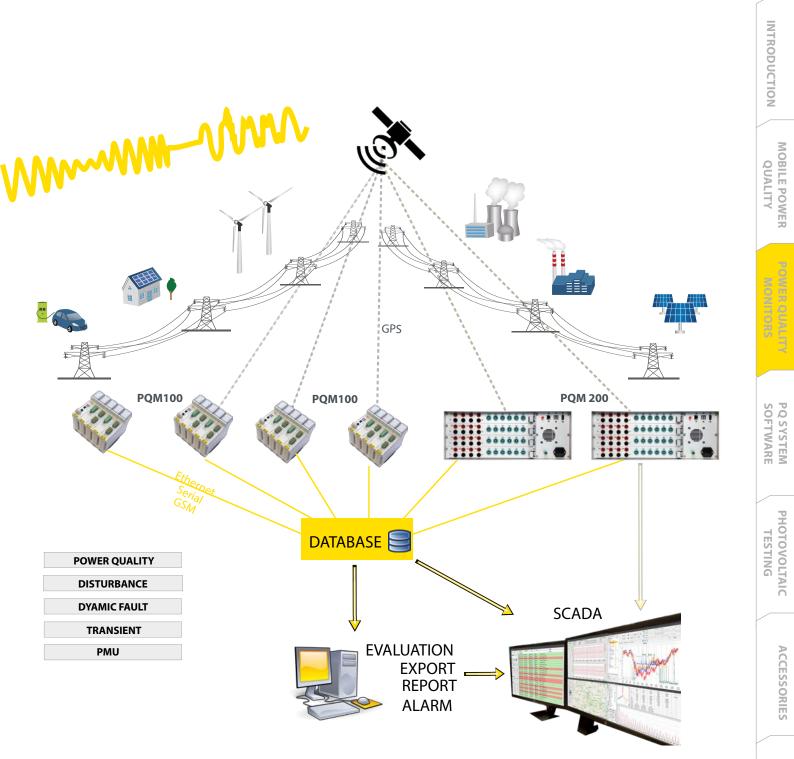
POWER QUALITY MONITORING

OVERVIEW

Page 29

Page 30

PQM 100 Key Features Input Modules Specifications


PQM 200 Key Features Input Modules Specifications

Page 34

SERVICES & ABOUT NEO

POWER QUALITY MONITOR

QUALITY

PQ SYSTEM SOFTWARE

PHOTOVOLTAIC

ACCESSORIES

PQM 100

Power Quality

Harmonics, THD Supraharmonics, Symmetrical components etc.

System Dynamics

Phasor Measure Unit (PMU), Rate of Change of Frequency (RoCoF), WAMS, etc.

VV

Transients

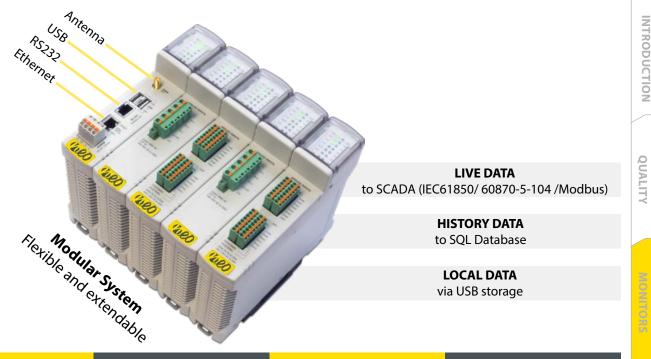
1/2 period values,

Phase Angle jumps,

Resonances,

Switching etc.

Power


Active, reactive, apparent power, PF, harmonic power, energy, etc.

ACCURACY SAMPLING RATE RESOLUTION SAFETY CATEGORY MODULAR SYSTEM

0.1% 16kS/s or 32kS/s 24bit CAT IV 300V up to 64 ch

PQM 100

HYBRID DATA STORAGE

Even if the connection is lost all data are stored locally and will be transmitted after reconnection. DATA ON-DEMAND All data can be transferred continuously or just triggered

on demand.

REMOTE CONFIGURATION

The instrument can be configured remotely or locally. Either option also can be disabled.

REMOTE LOCATION

All data can be transmitted via Ethernet and via a GSM connection.

TECHNICAL SPECIFICATIONS

Operating Temperature	- 25°C up to + 60°C	
Storage Temperature	- 30°C up to + 80°C	5
Humidity	< 95%, no condensation	
Nominal Voltage Input	24V DC	
Nominal operation input current / power	0,5A / 12W (max. 1,5A / 36W)	
Protection	IP20	
Power Quality	Class A (according to EN61000-4-30 Ed.3)	
Dimensions	180 x 120 x 158 mm (h x w x d)	
Weight	1.5kg	
Interfaces	Ethernet, USB, Serial Port, RS232(e.g. for reading data of revenue meter)	
Data File Format	.csv (for local storage)	

Full technical specifications can be downloaded at: www.neo-messtechnik.com or requested via support@neo-messtechnik.com PQ SYSTEM SOFTWARE

MOBILE POWER

SPECIFICATIONS

ER POW

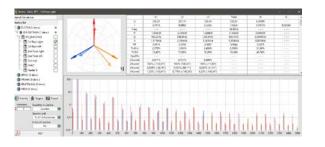
PQM-100 is based on modular architecture, allowing combination of one CPU module and up to 6 selected input modules into one device. The input modules are providing input signal isolation, filtering and A/D conversion. The CPU module is equipped with FPGA real-time controller for the calculation of all parameters and to provide all interfaces and data storage.

CPU MODULE	
CPU	CPU module (667 MHz dual-core, FPGA, real-time OS) with 8-32 GB SD card, Ethernet, serial port, USB for data download and direct PC connection, 24V DC (power supply not included)
ODTIONC	- PQM100-CPU-GPS: extended with an integrated GPS receiver
OPTIONS	- PQM100-CPU-GPS-F: extended with a fiber optic interface for GPS

ll analog input mo	dules are providing 24 bit sigma-delta A/D conversion.
HV4	4 channel high voltage input module, 300V RMS range (measuring up to 600V RMS), 16 kS/s or 32 kS/s per channel, 6kV isolation, CAT IV 300V, $1M\Omega$ Input Impedance
HV4LV4	 4 channel high voltage input module, 300V RMS range (measuring up to 600V RMS), 16kS/s or 32 kS/s per channel, 6kV isolation, CAT IV 300V, 1MΩ Input Impedance 4 channel low voltage input module, 1V RMS range, 16 kS/s per channel, 2.5kV isolation
LV16	16 channel low voltage input module, 1V RMS range, 16kS/s per channel. 2 channels can be switched to temperature measurement with PT1000
LV8	8 channel low voltage input module, 1V RMS range, 16 kS/s per channel
LA5-1	5 channel current input module, 1A RMS range, 16 kS/s per channel
LA5-5	5 channel current input module, 5A RMS range, 16 kS/s per channel
DIO	8x Digital Input (24 V DC, galvanic isolated, CAT III 150V) 4x Digital Out (Relays, 8A/250V AC, galvanically isolated, CAT III 300V)

PQM 100

TURNKEY SOLUTIONS


We can provide turnkey solution for your project. After discussing the requirements, we will create a specification book including plans (circuit plan, item list, etc.) and schematics.

After approval you will receive your turnkey measurement solution. One example is shown in the picture. In addition to the measurement instrument, other electrical equipment such as a power supply, protection, wiring etc. is provided in a cabinet.

PQM-SCADA

PQM-SCADA is the enterprise management software for Power Quality Analyzers. PQM-SCADA software shows real-time data of all the PQ instruments as well as historical data stored in a central server or cloud storage. Data visualization, data analysis, report generation (EN50160), and notifications are just a few of the powerful features of PQM-SCADA software.

PQM MONITORS


	PQM 100	PQM 200
	A CONTRACTOR OF	
Accuracy	0.1%	0.05%
Sampling Rate	16kS/s or 32kS/s	144kS/s
Resolution	24bit	24bit
Safety	CAT IV 300V	CAT IV 600V

POWER QUALITY MONITOR

QUALITY

PQM 200

Power Quality

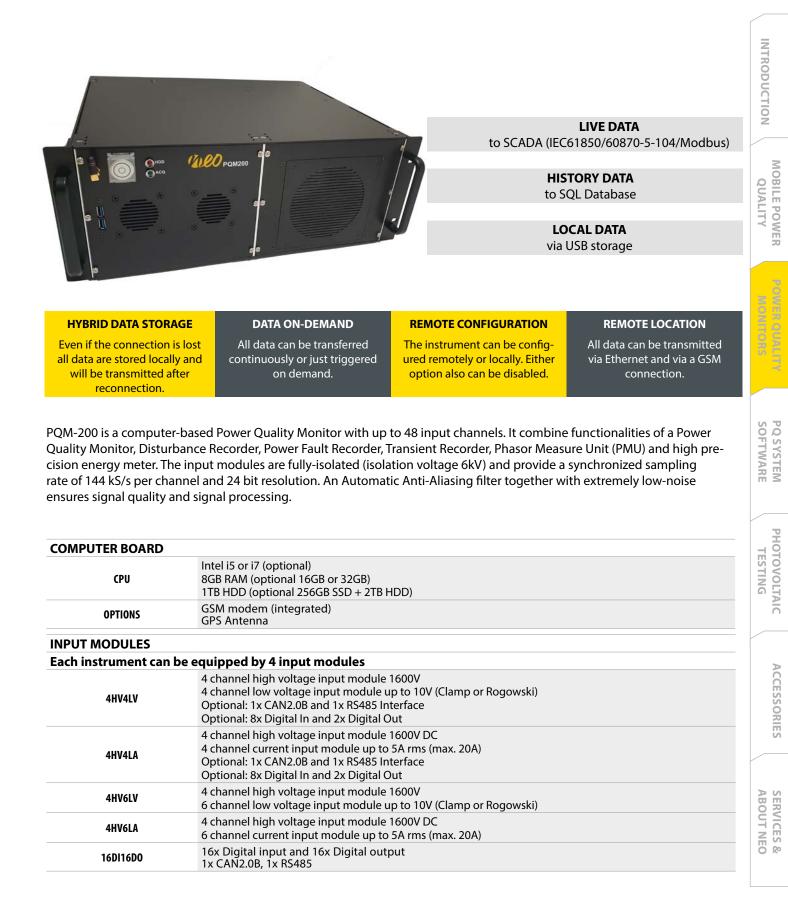
Harmonics, THD Supraharmonics, Symmetrical components etc.

System Dynamics

Phasor Measure Unit (PMU), Rate of Change of Frequency (RoCoF), WAMS, etc. Transients

1/2 period values, Phase Angle jumps, Resonances, Switching etc.

Power


Active, reactive, apparent power, PF, harmonic power, energy, etc.

ACCURACY SAMPLING RATE RESOLUTION SAFETY CATEGORY MODULAR SYSTEM DESKTOP or RACK-MOUNT

0.05% 124kS/s 24bit CAT IV 600V up to 40 ch

PQM 200

INTRODUCTION

HIGH-VOLTAGE (HV) INPUT SPECIFICATION

Measurement Range	1600V
Accuracy	0.05%
Safety and Isolation	6kV isolation (60 sec) CAT III 1000V / CAT IV 600V
Sampling Rate	124kS/s per channel (selectable)
A/D Conversion	24 bit sigma-delta A/D conversion with an automatic Anti-Aliasing Filter
Bandwidth	70kHz (Alias-free)
Input Impedance	3.8MOhm
Connector Type	Banana, Screw Terminal

LOW-VOLTAGE (LV) INPUT SPECIFICATION

Measurement Range	2mV, 20mV, 200mV, 1V, 2V, 5V, 10V
Input Type	Clamp or Rogowski (Integrator inside instrument)
Accuracy	0.05%
Sampling Rate	124kS/s per channel (selectable)
A/D Conversion	24 bit sigma-delta A/D conversion with an automatic Anti-Aliasing Filter
Bandwidth	70kHz (Alias-free)
Input Impedance	10MOhm
Excitation Voltage	±15V /12V / 3.3V
Connector Type	LEMO, DSUB9

CURRENT (LA) INPUT SPECIFICATION

Measurement Range	5A rms (max. 20A peak)
Accuracy	0.05%
Sampling Rate	124kS/s per channel (selectable)
A/D Conversion	24 bit sigma-delta A/D conversion with an automatic Anti-Aliasing Filter
Bandwidth	70kHz (Alias-free)
Connector Type	Screw Terminal

DIGITAL IN / OUT SPECIFICATION

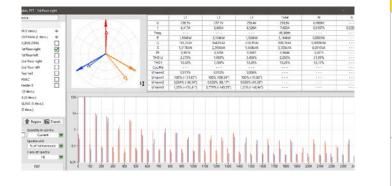
' isolation / adjustable trigger levels	
otoMOS Relais, 350Vp / 0,12A	
' isolation	
' isolation	
,)	

Modular

Exemplary Configurations with different types of connectors

INTRODUCTION

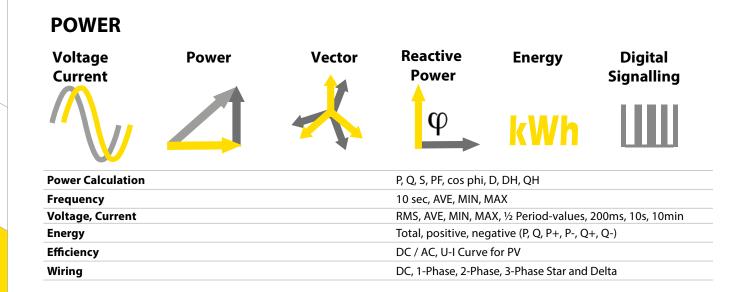
MOBILE POWER QUALITY


PQ SYSTEM SOFTWARE

PHOTOVOLTAIC TESTING

ACCESSORIES

Operating Temperature	0°C up to + 50 °C (32°F to 122°F)					
Storage Temperature	-20°C to + 80°C (-4°F to 176°F)					
Humidity	< 95%, no condensation					
Nominal Voltage Input	85-264V AC / 47-63Hz					
Protection	IP20					
Power Quality	Class A (according to EN61000-4-30 Ed.3)					
Dimensions	19" 4x height units 170 x 484 x 381 mm (h x w x d)					
Weight	8.8kg					
Interfaces	Ethernet, USB, WiFi, Bluetooth, RS232(optional)					
Data File Format	.csv (for local storage)					


We are also happy to send you a hard copy of the catalog. Just send us an email to sales@neo-messtechnik.com

	PQM 100	PQM 200
	NI DO DO	
Accuracy	0.1%	0.05%
Sampling Rate	16kS/s or 32kS/s	144kS/s
Resolution	24bit	24bit
Safety	CAT IV 300V	CAT IV 600V

POWER QUALITY

WAVEFORM & TRANSIENTS

Transients	Resonances Oscillations	Switching	DC Offset	Overvoltage	Undervoltage				
MIN, MAX, RMS,	AVE	U, I, P, C), S, f, PF, phi, THD, H	larmonics, Interharm.,	Unbalance, etc.				
ENVELOPE / WIN	DOW	U, I							
DELTA		dU, dI, d	dU, dl, df, dP, etc.						
DERIVATE (RATE	OF CHANGE)	dU/dt, d	dU/dt, df/dt etc per ms, number of periods or half-period						
VOLTAGE SIGNA	LLING	Thresho	Threshold						
EN50160		Trigger	Trigger on any EN50160 parameter (Max, Quantil)						

COMPLYING STANDARDS

POWER QUALITY, HARMONICS, FLICKER: IEC61000-4-30 Ed. 3 Class A / IEC61000-4-7 / IEC61000-4-15 / IEC62586-2 Ed. 2 / IEC62586-1 PUBLIC GRID, RAILWAY AND INDUSTRY EN50160 / EN50163 / IEC61000-2-2 / IEC61000-2-4 (Class 1; 2; 3) / IEEE519 / IEEE 1159 / IEC61000-2-12 / NRS048 WIND POWER, RENEWABLES AND GRID CODES IEC61400-21 / IEC61400-12 / FGW-TR3 / VDE N-4105 / VDE N-4100 / VDE N-4110 / D-A-CH-CZ / BDEW / ROCOF / IEEE C37.118-2005 (PMU) MOTORS, TRANSFORMERS AND ELECTRICAL EQUIPMENT IEC60034 / IEC 60076-1 / IEC61000-3-2 / IEC61000-3-3 / IEC61000-3-11 / IEC61000-3-12

INTRODUCTION

ABOUT NEO

CLASS A

POWER QUALITY Harmonics Interharmonics Supraharm 2-9 kHz		INTRODUCTION
according to IEC 61000-4-30 Ed.3 and IEC 62586		MOBILE POWE QUALITY
Harmonics (Voltage, Current, Phi, Power)	Class A	Y WER
Interharmonics	Class A	
THD U, THD I	Class A	MOM
Higher Frequencies (200Hz band)	2 - 9 kHz (only PQM 200)	MONIT
Higher Frequencies (2000Hz band)	-	
Symmetrical Components & Unbalance (Pos-, Neg- and Zero Sequence)	Class A	
Rapid Voltage Changes	Class A	
Flicker (PST, PLT, Pinst)	Class A	
Voltage Events (dip, swell, interruption – time, extrema, length)	Class A	SOFTWARE
Frequency	10 sec, AVE, MIN, MAX	VARE
Voltage, Current	RMS, AVE, MIN, MAX, ½ Period-values, 200ms, 10s, 10min	m >
Time Synchronisation	Class A	PH

DISTURBANCES AND SYSTEM DYNAMICS

Time Synchronisation	Class A	- PH
DISTURBANCES AND SY	STEM DYNAMICS	HOTOVOLT
Disturbances Frequency 1/2 period RoCoF	Phase Angle PMU Jumps	IG
	φ	ACCESSOR
1/2 PERIOD TRIGGER	U, I, P, Q, S, f, PF, phi, THD, Harmonics, Interharm., Unbalance, etc.	RIES
PHASE ANGLE TRIGGER	phi	
SYMMETRICAL COMPONENTS	Pos., Neg., Zerosequence	
RATE OF CHANGE FREQUENCY (ROCOF)	df/dt	AB
Phasor Measure Unit (PMU) according to IEEE C37.118	Total Vector Error 0.01% (typ.) Angle Error 0.003°(typ) Timestamp Accuracy 0.1 μs up to 50 fps / via TCP / open PDC format / Offline storage possible	OUT NEO

Details Implementation 1 results Implementation an info database set studu. Implementation as in the database set studu. Implementation Bate in the database set studu. Implementation
Detak 31 events anadota see statul. wate into database see statul. anadota
31 events Andole set string Attended set string
J reellos lineda se estoring. lea in he database es extual. lea in he database es extual. lea in he database es extual. la in odd se estoring. lea in he database es extual. la in odd se estoring. lea in he database es extual. la in odd se estoring. lea in he database es extual. la in odd se estoring. lea in he database es extual. la in odd se estoring. la in the database es extual. la in odd se estoring. la in the database es extual. la in the
a module are tanks as in the database are actual. All indedde are actual. Data in the database are actual. All indedde are actual. Data in the database are actual. Data in the database are actual. All indedde are actual. Data in the database are actual. Data in the databas
what in the database are old. what in the database are old. what in the database are otual. what is the database are otual.
beta in the database are actual. All models are storing. All and uses are storing. All and use are
All inthe database are actual. All modules are storing. All actor are module is not storing. Data in the database are actual. Data in the
dimindels are storing. Libit in the distabses are actual. All least one module is not storing. Data in the distabses are actual. Data in the distabses a
All modules are stroning. All modules are stroning. Data in the database are actual. Data in the database
At least one module is not storing. Data in the database are actual. Software is not running.
Data in the database are actual. Data in the database are actual. Data in the database are actual. Data in the database are actual. Software is running. Data in the database are old. Software is running. Data in the database are old. Software is running. Data in the database are old. Software is running. Software is r
Data in the database are old. Data in the database are old. Software is running. Data in the database are old. Software is running. Software is running.
And the database are old. Software is running. Data in the database are old. Software is running. Data in the database are old. Software is running. Software is running.
Software is running. Data in the database are old. Software is running. Software is r
Software is not running. Data in the database are old. Software is running. Software
And the set of the function of the set of th
Software is running.
Software is running
Average Av
Uta in the database will be a Control of the second s
Data in the database are old.
Data in the database are at used and the database are at use at used and the database are at used and t
Uita n the database are old. Data in the database are actual.
Software is running
Plant
Austria wasa Austria Company
Barn Matole Manager
eutoper to the first of the fir
Orthonic Marine Span Mare X anis of spectra unit X anis o

P.C.

11

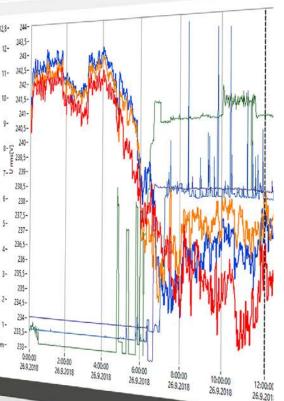
UPOR PRIVATE USE

Oth

(p)

X axis of spectra

POF


Hz

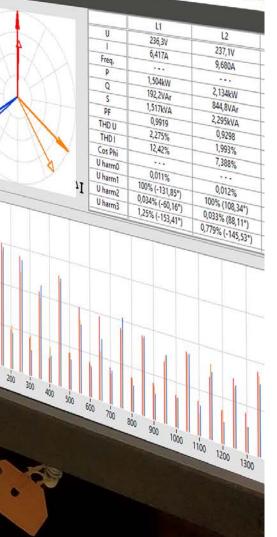
۲

0,01.

DATABASE SCADA & CLOUD

011/4

Waveforms


PQM SCADA SOFTWARE

Introduction Connectivity Overview Live Data History Data PQ Report (EN50160) Transients Events, Alarm Disturbances Supervision Cloud Option Additional Features

OTHERS

Wide Area Monitoring (WAMS) Phasor Measure Unit (PMU) Energy Monitor Page 42

Page 46

INTRODUCTION

INTRODUCTION

ABOUT NEO

PQM-SCADA is the enterprise management software for Power Quality Analyzers and Disturbance Recorders. PQM-SCADA software shows real-time data from all the PQ instruments as well as historical data stored in a central server or cloud storage.

Real-Time Data Historical data **Multiple Visualization** Automatic Report Generation (EN50160) Notifications, Alarm, Email, SMS Remote meter configuration User Management tool **Power Quality SCADA Server SQL Server** - Communication with devices - Historical data - Live values - Supervision Logs - Historical data storing to SQL - Reports - Supervision system - SQL interface - Automatic report and alarming - Web services - Scada client SCADA Clients - Access to all data, visualizations and results - System configuration

This central software can communicate with hundreds of instruments, and can support third party PQ meters (if documentation is provided). Data migration from existing data bases is possible as well as interfaces. Typical usage of PQM-SCADA is to monitor power quality and other parameters of the transmission or distribution grid.

CONNECTIVITY & INTERFACES

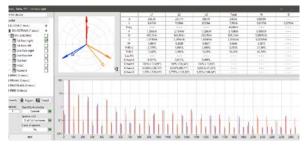
The PQM-SCADA system can communicate with other systems, and can also provide data to any third party system. The User Management tool allows an unlimited number of users to be added with different access and security levels.

OVERVIEW

This PQM-SCADA enterprise is an easy-to-use software solution which allows the user to visualize live-data, historical data or reports. The multi-screen capability gives the user the ability to design their own visualization screens including the use of multiple monitors. User-management with different access and security levels is integrated.... even the possibility to give your customers access to view limited data. The following picture shows the Overview & Configuration menu.

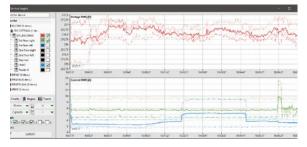
 On-line Data	1	Me 10.44		1.55	P	1 mile	Events				1	Mc	California	1	Th.	Panel to front		Us	er information
vir-line Data		S Histo	ry Data		Supervision	.114	Lvents		E. N	lessages		265	Settings			Panel to front	9	User:	DEMO
 0.1		0.5		11/17	and the second	-	and a second	1										Security level:	1 Un line monitorin
On-line Table	200	On-line Graphs	V V	V/F Profile	M Last Disturbance	-1	Last transient	6	Vector Spectra		Map							Auto, logout:	21.10.2018 01:10:05
 0.00		0.000	1.00	19.0005			45-07-2008	_	1996030	-								1	Logout

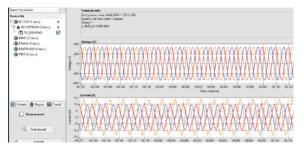
LIVE DATA


All visualizations are flexible and can easily be configured (parameters, colors, etc.). All graphs can be shown simultaneously.

PQM SCADA

TABLES


VECTOR / HARMONICS


SUPERVISION

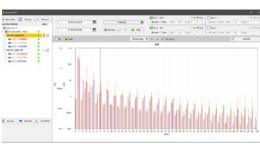
	Date & time	Linkson	Unit	Front	Deale
Educh		Lubritution	Unit	Form	
	ind Supervision events	-		-	31 overh
iy device:	- O 1100 2010 IN 12 (1, M)	· Dir Ostriaun	T IN BUILDING	Calabara .	B Date - the distance of aduat
	21.0E.7019 DB 16/19,467	A DU OTTRAIN	DIVERSIONS	Casters	· Das in the calibrate are ald
OH.	ALDE JULY 12 18 17 (214	🛊 Eu OSTRAIA	The Borthead	Californi	B Date it the Adultant are exhaut.
	- O 18.06.2018 14.55.06.175	A DU OSTRAN	E suit TEST	C) Shrunning	 Sotoras à saving
	C FLOR JUTE TO MALTLARD	Chronosaux	ET WAT THEY	O Winning	Software a namery
Later werth or	- O 1606,2010 (\$144,21,100	A SCHWOKIN	TICHNICK 1881	To Ferg	Certais tol reporting
	10260/01113 MeetIN1	A SOMACKS	TO BACK THE	The First	Device is not required og
resp.	O 1206-2013 1248 NUMBER	A SOMMOUSE	SCHRUCK TELE	To Perg	· Cercara tot recording
Depres 10	C 1106,3010 11160-0.628	SOMACK B	SCHRACK TEST	To Party	Covies is not responding
	O ITALIAN TRANSPORT	& SCHRACK IR	TINHAR THE	To First	· Deviat tof reproding
Same in	- O 17.06.2018 19.30-17.625	# SCHWOLSE	TID-RACK TUP	To Fey	Concale reporting
	C 1106.3010 1818.10.1094	@ SCHMACK M	TICHRACK THE	Server .	B Decrement of reasoning
-	- O \$106,20111105/03577	A SCHWACKSK	T SOMROK TEST	T. Fey	· Device-& reponding
Max 10 events	O 0104,2010 10-56-16,477	# SOBACKSK	TICH BACK TEST	To Fing	· Envice is not responding
NO WOME	O 1101-2011 1039-2017	. EVI OSTRAUN	IT IN BUILDING	O Westing	· Schoon a service
	- O #100,0018 1546,01,008	CU OLIRANA	TIMEBUILDING	E3 Streaming	· Sellence is not survey
a	O (108.3011104631.001	CU OSTRAA	TO DAY BRILDING	C) Silvening	· Suffering a country
Latinetti 🗮	- O STOCOPIE 18-4431.528	& DV.OSTANA	TOM BUILDING	(C) Sit maning	· Solb-ox a not numera
1.0	O 17 08 3018 15 39-14 381	4 SORACKER	TICHACK TOT	To Pers	· Device is not requesting
1 199 (Ginn 199)	- O STOLOTE 15 MATLINE	# SOMICIE	SO-REDK TRUE	To Page	Device's ref regarding
MALTIN MALT	O PARAMENTAL PL	# Dr Officia	IT IN RELEVAL	Cathole .	B Data in the Catabase and adhese
	CO STORE OFFICE AND ADDRESS OF	A SCHEWER	TOTAL BACK THE	The Party	Device's tel equinating
	- O ILOLOW I 15 (741.214	A SCHWACK SK	T SCHOOL THE	To Ping	Opvissie net manneling
LIPORT.	-	A trainage of	There many note		· Christian and a state of the

GRAPHS

LAST TRANSIENT / DISTURBANCE

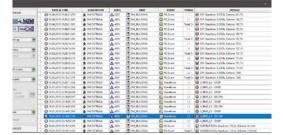
MAPS

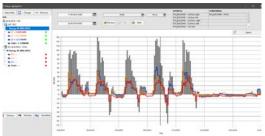
DATA ANALYSIS

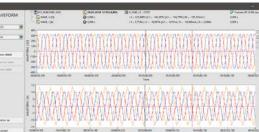

HISTORICAL DATA

The powerful analysis capabilities allows for comprehensive data analysis inside the enterprise software.

GRAPHS


FFT


HISTOGRAM


EVENT LIST


ENERGY

TRANSIENTS / WAVEFORM

AUTOMATIC EN50160 REPORT

EVENT STATISTICS

ADDITIONAL FEATURES

There are additional features such as alarms, notifications, emails and SMS services. All PQM and PQA meters can be configured remotely (firmware, software, configuration etc.). This powerful system monitors each device status and its fault state. The supervision overview distinguishes between two states: OK and Failed. Some of the functions available for monitoring include: ping, sw running, data storing, data in the database, etc.

INTRODUCTION

ACCESSORIES

APPLICATIONS

PMU - PHASOR MEASUREMENT UNIT

Highest Precision Synchrophasor Measurement

PMU - The Phasor Measurement Unit is a device for accurate synchrophasor measurements. The measurement results are used for the online detection of the electrical grid status. This principle is based on comparing the phase angles of the fundamental harmonic measured at different points of the distribution or transmission network using several devices at synchronized points in time.

High-Accurate GPS Receiver

The meter has to be equipped by the internal/external GPS for receiving synchronous timestamps.

Additional Sensor and Range calibration

The additional sensor and measurement range calibration (see chapter PQA8000 calibration) enables for highly accurate measurement results.

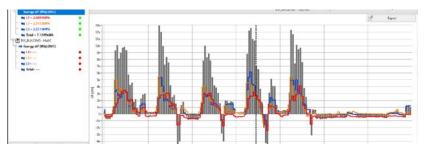
IEEE C37.118

The PMU firmware measures voltage and current phasors, frequency, and calculates the positive symmetrical components of voltages and currents. The measured data is sent to the superior system according to the IEEE C37.118 communication protocol. By default, the device fully complies with the requirements of IEEE C37.118, which defines the PMU accuracy in stabilized state and a communication protocol for real-time phasor transmission.

The PQA8000 instrument offers a built-in GPS receiver together with highly-accurate voltage inputs and

- Total Vector Error 0.01% (typ.)

- Angle Accuracy 0.003° (typ.)


WAMS - Wide Area Monitoring System

Phasor angle differences between various parts of the transmission grid are an indicator of grid health and can provide early warning in the case of developing power system disturbances that can lead to grid separation known as islanding, or even blackout. The accurate measurement of the phasor angles across the grid is made possible by the use of GPS-synchronized phasor-sampling clocks. Nationwide networks of time-synchronized phasor measurement units (PMUs) are called Wide Area Monitoring Systems (WAMS).

The main features of the WAMS systems are the visualization and monitoring of phasors, islanding detection, resynchronization and black start detection, oscillations detection, stability and voltage monitoring. The results can also be transmitted to SCADA

ENERGY MEASUREMENT

Meter input modules are designed to measure one 3-phase voltage and multiple 3-phase current systems. The intention of this meter is typically to monitor the distribution transformer powering multiple output feeders. The functionality of multi-feeder-monitors is similar to a PQ meter, with the possibility of measuring up to 10x the number of 3-phase feeders in total. The multi-feeder-monitor also provides detailed information about the power and energy consumption of each feeder

INTRODUCTION

QUALITY

POWER QUALITY

MONITORS

SOLAR / PV TESTSYSTEMS

MULTI-CHANNEL IV CURVE TRACER

Introduction IV Curve Tracing PV Master 70 PV Master 80 Software Highlights Page 48

INTRODUCTION

SOLAR PHOTOVOLTAIC POWER PLANTS

The number of solar power plants has been steadily increasing over the past years. Photovoltaic systems are known for:

- Long lifetime
- Low aging effects
- Low maintenance
- Low operating costs
- Easy Installation
- Robust

Nevertheless different kind of faults in PV systems can occour.

E Performance losses of >10% within 3 years are very common

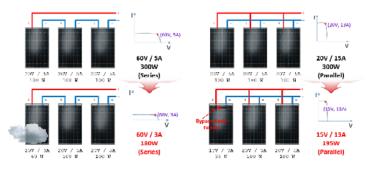
Bost faults are not detectable by visual inspection

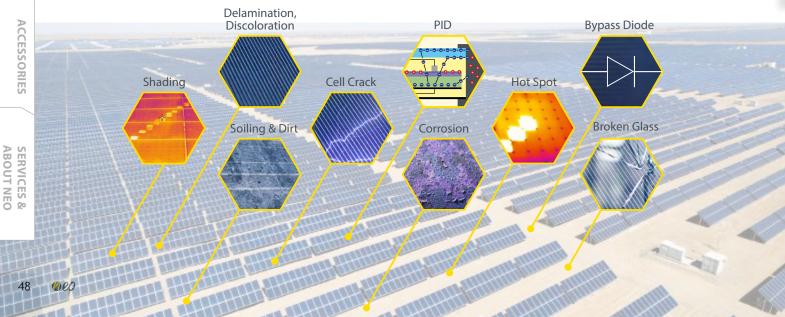
Mismatch losses of PV strings are 10x to 100x times higher than defect panels

Faults

Possible faults at photovoltaic panels and systems are:

- Mismatch Losses - Hotspots
- Potential Induced Degradation
- PQ SYSTEM - Shading - Bypass diode defect

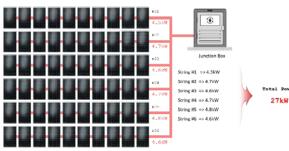

SOFTWARE

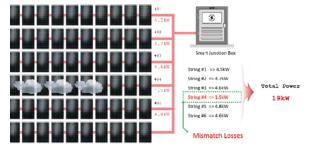

- Cell Cracks
- Glass breakage
- Soiling - Snail Trails
- Delamination
- Discoloration
- Corrsoin
- etc.

Mismatch Losses

Mismatch losses occur at serial or parallel connection of PV panels due to differing electrical characteristics. The reasons for mismatch can be: different panels, different elevation, shading, hotspots, PID, any other faults. The following picture gives an explanation of the losses due to serial (left) and parallel (right) connection:

MOBILE POWER QUALITY


POWER QUALITY MONITORS


IV CURVE TRACING

Example Mismatch Losses PV park

In solar farms usually a combination of series and parallel connection of PV panels is used in order to use the full MPP input range of inverters. Via series connection panels will be connected to a PV-String. Connecting this PV strings together via parallel connection will represent a PV-Array. If now one string of the PV-array will reduce it's output power due to any defective module or tempory shading, not only the power of this string will be reduced. The whole system voltage (parallel connection of voltage sources) will decrease and the power of the whole array decreases. In the example below the output power of the array will be reduced by 8 kW (30%) instead of 3kW (10% reduction at string) due to this Mismatch losses.

Inspection Methods

Beside visual inspection the following inspection methods are used:

- Thermal Imaging

This technique is most used for inspection of PV plants. It requires Know-How for execution and analysis of the measurements. Often drones are required and the power plant needs to be in full operation (heat). It allows

detection of different kind of faults and to find broken components. Nevertheless Mismatch losses and PID can not be detected.

- Electroluminescence

This technique is mainly done in laboratories. Modules will get activated by current injection. Measurements are done without solar radiation (by night). It allows detailed analysis of PV panels. Nevertheless mobile measurement systems are not available. The systems require high power for signal injection.

IV Curve Tracing

This technique will record the voltage and current profile (IV curve) of PV panels starting at the openc-circuit voltage (Voc) to the short-circuit current (Isc). Depending of the shape of the curve, different faults can be detected.

Multi-Channel IV-Curve Tracer

PV MASTER 70

		-						
CPU	ı	Intel© I	Processor E3940 @) 1,6 GHz				
RAM	٨	8 GB						
SSI)	2x 256GB SSD						
OS			Windows 10 IoT					
Displ	ay	10.1 " TFT LCE	Display(Touch), 8	00cd, 1280x800				
PC Inte	rface	2 x USB, 1	x Ethernet, 1x RS-	485 1 x WiFi				
Ohannal	Voltage	20 CH(for IV c	urve) + 2 CH(for po	otential voltage)				
Channel	Current		20 CH (IV curve)					
Measurement Voltage		1100 [V] (IV curve), 1600 [V] (potential voltage)						
Range	Current	40 [A] (IV curve)						
	ADC Type	Delta-Sigma ADC						
ADC	Sampling Rate	Max. 144 kS/s						
		BNC Type	1 CH	l (10 V)				
Analog	Input	Thermocouple	Channel	2 CH				
		(K-Type)	Temp. Range	-100°C to 300°C				
Power S	upply	90 ~ 250 VAC / 47 ~ 63 Hz						
Size (Width x Le	ngth x Height)	487 x 325 x 175 mm 19.2 x 12.8 x 6.9 inch						
Temperature	Operation							
Range	Storage	-20°C to 8	0°C -20°C to 80°C / -	4°F to 176°F				

20 CHANNELS

Simultaneous measurement and diagnostics of up to 20 strings (channels) using Time-Sync technology.

up to 1600V / 40A

Designed for high-power applications (high voltage / high current)

MOBILE OPERATION

The integrated battery pack allows an operating time of up to 4 hours of operation.

SMART TOUCH

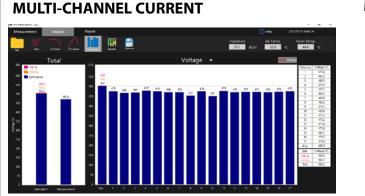
The 10.1 inch Smart Touch display responds immediately without any delay with intuitive operation like on a mobile phone.

Multi-Channel IV-Curve Tracer

MOBILE POWER

POWER QUALITY MONITORS

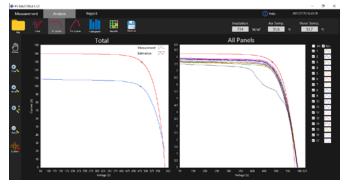
QUALITY


EASY CONFIGURATION

MULTI-CHANNEL POWER ANALYSIS

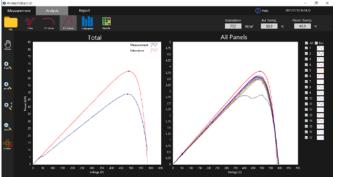
MULTI-CHANNEL VOLTAGE

Provide the pro


PQ SYSTEM SOFTWARE

100

Highlights


MULTI-CHANNEL IV-CURVE

AUTOMATIC DIAGNOSTIC

MULTI-CHANNEL PV-CURVE

FAULT DETECTION:

- Mismatch Losses
- Bypass diode breakage
- Potential Induced Degradation (PID)
- Hotspot
- Shading
- Leakage
- and a lot more...

IEC 62446-2 INTERNATIONAL STANDARD NORME

IEC

PQ SYSTEM SOFTWARE

INTRODUCTION

MOBILE POWER QUALITY

POWER QUALITY MONITORS

ACCESSORIES

SERVICES & ABOUT NEO

@eo 53

ACCESSORIES

CURRENT MEASUREMENT

Page 56

AC Clamps AC Rogowski Coils AC Split-Core Sensors AC/DC Clamps AC/DC Split-Core Sensors AC/DC Zero-Flux Sensors

VOLTAGE MEASUREMENT

Page 60

Test Leads Adapters Dividers, Transformers

OTHER ACCESSORIES

Page 61

AC CLAMPS

AC CLAMPS

CLAMP-5AC

	Туре	Iron-Core		
	Range			
	Bandwidth	20 kHz		
Mine 2	Accuracy	0,5 - 6A: 0,1 - 0,5A: 5mA -0,1 A:	± 0,5 % of reading ± 1 % of reading ± 2 % of reading	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Phase	1 - 12A: 0,5 - 1A: 5mA - 0,5 A:	± 0,5 ° ± 1 ° ± 2 °	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Sensitivity	100 mV/A		
	Dimensions	102 x 34 x 24 mr	n (Clamp Opening d	= 15mm)
CLAMP-20AC				
	Туре	Iron-Core		
and the second	Range	20 A		
· ·	Bandwidth	20 kHz		
a eo	Accuracy	0,5 - 20A: 5mA - 0,5 A:	\pm 1 % of reading \pm 2 % of reading	(with NEO calibration typ. \leq 0.5 %) (with NEO calibration typ. \leq 1 %)
	Phase	0,5 - 20A: 5mA - 0,5 A:	±2° ±2°	$\begin{array}{ll} \mbox{(with NEO calibration typ.} & \pm 0.5 \ ^{\circ}\mbox{)} \\ \mbox{(with NEO calibration typ.} & \pm 1 \ ^{\circ}\mbox{)} \end{array}$
	Sensitivity	10 mV/A		
	Dimensions	102 x 34 x 24 mr	n (Clamp Opening d	= 15mm)
CLAMP-200AC		Iron Coro		
	Range	Iron-Core		
	hange	200 A		
	Bandwidth	10 kHz		
	Bandwidth Accuracy	100 - 240 A:	\pm 2,5% of reading	(with NEO calibration typ. \leq 0.8 %) (with NEO calibration typ. \leq 1 %) (with NEO calibration typ. \leq 2 %)
	Accuracy	100 - 240 A: 10 - 100 A :	\pm 2,5% of reading	(with NEO calibration typ. \leq 1 %)
The second se	Accuracy	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A:	$\pm 2,5\% \text{ of reading}$ $\pm 3,5\% \text{ of reading}$ $\leq 2,5^{\circ}$ $\leq 5^{\circ}$	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$)
	Accuracy Phase Sensitivity	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A	$\pm 2,5\% \text{ of reading}$ $\pm 3,5\% \text{ of reading}$ $\leq 2,5^{\circ}$ $\leq 5^{\circ}$	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$)
CLAMP-1000AC	Accuracy Phase Sensitivity	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A	\pm 2,5% of reading \pm 3,5% of reading \leq 2,5° \leq 5° not specified	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$)
CLAMP-1000AC	Accuracy Phase Sensitivity Dimensions	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A	\pm 2,5% of reading \pm 3,5% of reading \leq 2,5° \leq 5° not specified	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$)
CLAMP-1000AC	Accuracy Phase Sensitivity Dimensions	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A 135 x 51 x 30 mr	\pm 2,5% of reading \pm 3,5% of reading \leq 2,5° \leq 5° not specified	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$)
CLAMP-1000AC	Accuracy Phase Sensitivity Dimensions Type	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A 135 x 51 x 30 mr Iron-Core 1000 A	\pm 2,5% of reading \pm 3,5% of reading \leq 2,5° \leq 5° not specified	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$)
CLAMP-1000AC	Accuracy Phase Sensitivity Dimensions Type Range	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A 135 x 51 x 30 mr Iron-Core 1000 A 10 kHz 100A - 1200 A :	± 2,5% of reading ± 3,5% of reading ≤ 2,5° ≤ 5° not specified n (Clamp Opening d a 0,3% 0,5%	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$)
<image/> <section-header><section-header></section-header></section-header>	Accuracy Phase Sensitivity Dimensions Type Range Bandwidth Accuracy	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A 135 x 51 x 30 mr Iron-Core 1000 A 10 kHz 100A - 1200 A : 10A - 100 A:	± 2,5% of reading ± 3,5% of reading ≤ 2,5° ≤ 5° not specified n (Clamp Opening d 0,3% 0,5% 2 % 0,7°	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$) = 22mm) (with NEO calibration typ. ≤ 0.2 %) (with NEO calibration typ. ≤ 0.2 %)
<image/> <section-header><section-header></section-header></section-header>	Accuracy Phase Sensitivity Dimensions Type Range Bandwidth Accuracy	100 - 240 A: 10 - 100 A : 0,5 - 10 A: 100 - 240 A: 10 - 100 A : 0,5 - 10 A: 10 mV/A 135 x 51 x 30 mr 10 mV/A 135 x 51 x 30 mr 1000 A 10 kHz 1000 A 10 kHz 1000 A : 100 - 1200 A : - 100 A	± 2,5% of reading ± 3,5% of reading ≤ 2,5° ≤ 5° not specified n (Clamp Opening d 0,3% 0,5% 2 % 0,7° 1°	(with NEO calibration typ. ≤ 1 %) (with NEO calibration typ. ≤ 2 %) (with NEO calibration typ. $\leq 1.5^{\circ}$) (with NEO calibration typ. $\leq 3^{\circ}$) = 22mm) (with NEO calibration typ. ≤ 0.2 %) (with NEO calibration typ. ≤ 0.3 %) (with NEO calibration typ. $\leq 1.3^{\circ}$)

CENTER ADAPTER

This adapter can be used for small cable diameters to optimize the cable position and improve accuracy. This adapter is available upon request for all current sensors.

SERVICES & ABOUT NEO

AC COILS & SPLIT-CORE

AC ROGOWSKI COILS

FLEX-MINI-3000		
	Туре	Rogowski coil
	Range	30A / 300A / 3000A / 30kA
Ø 45mm	Bandwidth	PQA7000: up to 20 kHz PQA8000: up to 70 kHz PQA8000H: up to 500 kHz
	Accuracy	1% (with NEO calibration typ. \leq 0.3 %)
	Coil Length	170 mm (Ø 45 mm)
FLEX 3000		
	Туре	Rogowski coil
	Range	30A / 300A / 3000A / 30kA
Ø 125mm	Bandwidth	PQA7000: up to 20 kHz PQA8000: up to 70 kHz PQA8000H: up to 500 kHz
	Accuracy	1% (with NEO calibration typ. \leq 0.3 %)
	Coil Length	450 mm (Ø 125 mm)
FLEX 6000		
	Туре	Rogowski coil
	Range	30A / 300A / 3000A / 30kA
Ø 250mm	Bandwidth	PQA7000: up to 20 kHz PQA8000: up to 70 kHz PQA8000H: up to 500 kHz
	Accuracy	1% (with NEO calibration typ. \leq 0.3 %)
	Coil Length	800 mm (Ø 250 mm)

Flexible Length, Flexible Coil Diameter, Flexible Bandwidth, Flexible Scaling, Flexible cable length on request Rogowski Coils for measurements up to 150kA are available.

AC SPLIT-CORE SENSORS

SPLIT-IUA / 32A / 03A		
	Туре	Split-Core
Error a	Version	10 Arms / 32 A ms / 63A rms
	Bandwidth	3 kHz
	Accuracy	Class 1 (IEC 61869-2) (with NEO calibration typ. \leq 0.5 %)
	Sensitivity	333mV at nominal current
	Dimensions	32mm x 33.5mm 45.5mm (Clamp Opening Ø 10 mm)

SPLIT-10A / 32A / 63A

	Туре	Split-Core
	Version	10 Arms / 600 Arms
	Bandwidth	20 kHz
	Accuracy	Class 1 (IEC 61869-2) (with NEO calibration typ. \leq 0.5 %)
	Sensitivity	333mV at nominal current
	Dimensions	59.2mm x 89.2mm 32.5mm (Clamp Opening Ø 32,5 mm)

RESIDUAL CURRENT SENSOR AC+DC (RCM)

		Туре	Fluxgate
		Range	DC and AC residual current measurement of Type B/B+ in the range 0-2Arms
		Bandwidth	100 kHz
		Application	Single Phase, 3-Wire, 4-Wire
	Ø	Rated Voltage	690V
		Rated Current	100A / 300A
		Output	4-20mA Relay Output (DO/DI)
		Power Supply	24V DC
		Dimensions	156.1mm x 151.1mm x 69.4mm (Clamp Opening Ø 70 mm)
1111			

AC/DC HALL CLAMPS

AC/DC HALL CLAMPS

CLAMP-300DC

CLAMP-300DC		
	Туре	Hall sensor
		300A DC
		DC to 150 kHz
	Accuracy	$1\% + 2 \text{ mA}$ (with NEO calibration typ. $\leq 0.3\%$)
1 100	Sensitivity	20 mV/A
	Overload Capability	
		205 mm x 60 mm x 15 mm (Clamp opening d = 32 mm)
CLAMP-2000DC		
	Туре	Hall sensor
	Range	2000A DC
	Bandwidth	DC to 20 kHz
	Accuracy	2.5 % +/- 0.5A (with NEO calibration typ. \leq 1.5 %)
Neo m	Sensitivity	1 mV/A
	Dimensions	205 mm x 60 mm x 15 mm (Clamp opening $d = 32$ mm)
AC/DC SPLIT CORE SPLIT-300DC		
	Туре	Hall sensor
	Range	300A DC
	Bandwidth	DC to 150 kHz
SPLIT-3000C	Accuracy	1 % + 2 mA (with NEO calibration typ. \leq 0.3 %)
neo	Sensitivity	
	Dimensions	205 mm x 60 mm x 15 mm (Clamp opening d = 32 mm)
ICS-10A		
	Туре	Hall sensor
		10 A peak (Overload Capabilty 80A for 1sec)
NEO-ICS-10A	Bandwidth	
* 1200	Accuracy Sensitivity	
	•	62 mm x 42 mm x 25 mm
-		CAT II 1000V / CAT III 600V
IPCS-XXA		
-	Туре	Zero-Flux transducer
-		IPCS-10A: 10A rms
NEO-IPCS-10A		IPCS-25A: 25A rms IPCS-50A: 50A rms
	Bandwidth	500 kHz
	Accuracy	
_	Sensitivity	IPCS-10A: 40 mV/A IPCS-25A: 20 mV/A IPCS-50A: 10 mV/A
		130 mm x 65 mm x 50 mm
	Safety Category	CAT IL 600V

SERVICES & ABOUT NEO

AC/DC ZERO-FLUX SENSORS

AC/DC ZERO FLUX TRANSDUCERS

IT-65S

	Туре	Zero-Flux
C LEW COLOR	Range	60A rms (from -40° to +85°C)
	Bandwidth	DC to 800 kHz
	Accuracy	0.0033% of f.s.
	Sensitivity	600:1
	Dimensions	77 mm x 93mm x 78 mm (Opening d = 26 mm)
IN-500S		
	Туре	Zero-Flux
0	Range	500A rms (from -40° to +85°C)
-55 A	Bandwidth	DC to 520 kHz
	Accuracy	0.0015% of f.s.
	Sensitivity	750:1
States .	Dimensions	106 mm x 128 mm x 104 mm (Opening d = 36 mm)
IN-1000S		
	Туре	Zero-Flux
IN 1000-5	Range	1000A rms (from -40° to +85°C)
LEM LEE	Bandwidth	DC to 440 kHz
	Accuracy	0.0012% of f.s.
	Sensitivity	1500:1
	Dimensions	106 mm x 128 mm x 104 mm (Opening d = 38 mm)
IN-2000S		
	Туре	Zero-Flux
	Range	2000A rms (from -40° to +85°C)
	Bandwidth	DC to 140 kHz
	Accuracy	0.0012% of f.s.
	Sensitivity	2000:1
		191 mm x 231 mm x 153 mm (Opening d = 70 mm)

POWER SUPPLY

SINGLE CHANNEL POWER SUPPLY WITH INTEGRATED SHUNT

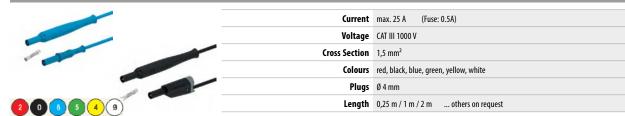
Power Supply	±15V (for Zero-Flux Transducers, AC/DC Clamps, etc.)		
Max. Power Output	1200 mA		
Integrated Measuring Resistor	selectable - 1 Ohm, 5 Ohm, 10 Ohm with 0.01% Accuracy		
Power Supply	DC Version: 10-30 V DC AC Version: 100-230V AC		
Dimensions / Weight	106x120x36mm (l x w x h) / Weight: 350g		
Temperature Range	-10°C to +45°C		
Connector	Sensor supply: DSUB9 Output Signal: BNC		

VOLTAGE MEASUREMENT

HIGH VOLTAGE DIVIDERS, TRANSFORMERS AND ISOLATED TRANSDUCERS

We offer different types of high-voltage adapters for measurements above 1600V DC. The portfolio covers voltage dividers, voltage transformers and isolated voltage dividers. Please contact your local sales partner or support@neo-messtechnik.com.

ALIGATOR CLIP


Current	max. 36A
Voltage	CAT III 1000V / CAT IV 600V
Colours	red, black, blue, green, yellow, white, purple, brown, grey, yellow-green
Plugs	Ø 4 mm
Dimensions	92 x 38 mm

Current	may 264
Current	max. 25A
Voltage	CAT III 1000 V
Cross Section	1,5 mm ²
Colours	red, black, blue, green, yellow, white, purple, brown, grey, yellow-green
Plugs	Ø 4 mm
Length	0,25 m / 1 m / 2 m others on request

SAFETY TEST LEAD FUSED

SERVICES &

100

ACCESSORIES

We offer a wide range of testing and measurement accessories. Please check our webpage or contact us for more information regarding the following accessories. In addition we also provide custom-made solutions according to your needs.

MEASUREMENT SERVICES

and the second second	CYCTEM INTECDATION	
	SYSTEM INTEGRATION	Page 64
-	Testbed Field Tests	
	Turnkey Solutions	
and the	Turnicy solutions	
21	MEASUREMENT SERVICES	Page 65
	High Voltage Applications	
	Equipment Testing	
	International Standards Evaluation	
and the second s	Efficiency Analysis	
THE P	Grid Impedance Measurement	
	TRAINING	Page 66
T		
	RENTAL SERVICE	Page 66
	Instruments	Tage 00
-5	Sensors	
1.	CALIBRATION	Page 67
	In-House Calibration	ruge of
	On-Site Calibration	
d	ISO Calibration	
and the second		
X		
14 . 14		
1		
and a		
A		
-		
drama.		1000
		MESSTECHNIK

SYSTEM **INTEGRATION**

MEASUREMENTS

Electrical:

Voltage, Current, Power, Power Quality, Impedance, Resistance, Isolation, Grouding, etc.

Mechanical:

Acceleration, Strain Gage, Speed, Torque, Vibration, etc.

Others:

Temperature, GPS, Video (high-speed, thermal), Data via Interfaces (RS232, CAN, Ethercat, etc.)

SYSTEM INTEGRATION

With our vast experience in the test & measurement market and our expertise for different applications and software programs we would be happy to support your next measurement project in the field or lab. We can integrate existing hardware as well as provide guidance in choosing the besthardware on the market to fit your needs.

TURNKEY SOLUTIONS

We can provide turnkey solution for your project. After discussing the requirements, we will create a specification book including plans (circuit plan, item list, etc.) and schematics. After approval you will receive your turnkeymeasurement solution.

One example is shown in the picture. In addition to the measurement instrument, other electrical equipment such as a power supply, protection, wiring etc. is provided in a cabinet.

OTHER SERVICES

- Application Engineer to support measurements
- Data Analysis
- Measurement Optimizations

WM WW

00

ABOUT NEO SERVICES

MEASUREMENT SERVICES

150kHz

INTRODUCTION

MOBILE POWER

POWER QUALITY

PHOTOVOLTAIC

MONITORS

QUALITY

HIGH-VOLTAGE APPLICATIONS

- Short Circuit Tests 16,7Hz / 15kV Railway Grid
- Disturbance & Transient Record Transmission & Distribution Grid
- Transformer and HVDC Efficiency Measurement (230V to 400kV)
- Interference Current Measurement
- Inductive Coupling Detection
- System Dynamics ROCOF / PMU
- Power Quality

GRID IMPEDANCE MEASUREMENT

Grid Impedance Measurement (Z, phi, Re, Im, R, X / Zero-, Postivie- Negative Sequence)

- Fundamental Frequency Impedance (50Hz / 60Hz /...)
- Grid Impedance up to 10 kHz (Higher Frequencies)
- Grid Impedance up to 150 kHz (Supraharmonics)
- Grid Impedance up to 10 MHz (PLC)
- Interaction Inverter

EQUIPMENT TESTING

- Resonances / Oscillations
- Switching Operations
- Distortion Analysis (THD, Unbalance)
- Overvoltage Detection DC-DC converters (e.g. 230V / 24V)
- Transients / Disturbances
- EV Charging Station Problem Detection
- Supraharmonics
- Inductive Coupling
- Photovoltaic System Testing (Performance, Safety,..)

INTERNATIONAL STANDARDS

Evaluation according to national and international standards:

Grid: **Renewable:** Motor, Transformer: Equipment:

EN50160, IEC61000-2-2/-4/-12, IEEE 1159, IEEE 519, NRS048 FGW-TR3, IEC61400-21, IEC61400-12, BDEW, TOR IEC 60076-1 / IEC60034 IEC 61000-3-2 /-12 and IEC 61000-3-3 /-11

EFFICIENCY ANALYSIS

Using best available technology on the market for highly precise measurement results.

- EV Charging Stations
- Motor
- Generator
- Inverter
- Transformer
- HVDC

TRAINING & RENTAL

TRAINING

INTRODUCTION

MOBILE POWER

POWER QUALITY

MONITORS

QUALITY

While designing the user-interface of our products our goal is to make it as user friendly and intuitive as possible. Nevertheless we offer various training possibilities in addition to all documentation such as technical manuals and training manuals:

- > On-Site Training
 - Perfect for groups and hands-on training directly at the customers' project site
- > In-House Training
 - Perfect for hands-on training in our lab with different DUT's such as motors, transformers etc.
- > Remote Training Perfect for quick trainings or special measurement applications at remote locations

Besides training for our products we also offer general training courses for electrical applications incl.:

- Electrical Safety of electric vehicles
- Electrical Safety (EN50110)
- Measurment and data acquisition
- Testing of electrical installations (E8101)

RENTAL SERVICES

Measurement Instruments:

Power Quality Analyzers

Frequency Generators

Grounding Resistance Meter

Installation Tester

Power Analyzers

FFT Analyzers


Data Logger

Calibrators

Scope

Accessories:

Current Sensors Voltage Dividers, Transformers Measurement Adapters Extension Cables Power Supplies & Battery Packs Ruggedized Measurement Computer and a lot more

PQ SYSTEM SOFTWARE

CALIBRATION SERVICE

CALIBRATION

The NEO R&D center is equiped with the most advanced calibration and testing equipment (Omicron, Fluke, Rohrer, etc.). Before your NEO data acquisition system is delivered, it is calibrated. Detailed calibration reports for your measurement system are included in the scope of delivery or can be requested at anytime.

It is recommended to calibrate your instrument at regular intervals. The standard norm across nearly every industry is annual calibration. In addition to extensive calibration and adjustment services we also carry out rigorous inspections that range from product functionality to sensors and accessories. This is a type of service that only manufacturers can provide.

We offer the following calibration services:

> Manufacturers Certificate:

Instrument Calibration, Power Calibration, Power Quality Calibration, Current Sensor Calibration, Banwidth Calibration up to 150kHz

> **Accredated ISO Certificate** (ISO17025, AKD/ÖKD) together with our partners: Instrument Calibration, Power Calibration, Current Sensor Calibration

ON-SITE CALIBRATION

All manufacturer certificates also can be issued directly on-site. This is especially useful for permanent installations or to reduce down-time.

TOTAL CARE PACKAGE

The total care package for your measurement instruments will cover:

- Annual Calibration of instruments and sensors
- Warranty Extension
- Fast turn around times
- On-Site or In-House Services

MOBILE POWER QUALITY

INTRODUCTION

COMPANY PROFILE	Page 70
SERVICE AND SUPPORT	Page 72
QUALITY	Page 73
SOCIETY AND ENVIRONMENT	Page 74
LOCATIONS	Page 76

SWITZERLAND

Office ZÖBERN

Training Center VIENNA

AUSTRIA

Mission:

To provide innovative, high-quality products that reflect the understanding of our customers needs for their specific application.

COMPANY PROFILE

NEO Messtechnik is a young company with extensive experience.

EXPERIENCE

- > 20 years of experience in the data acquisition market (DEWETRON, DEWESoft, Chauvin Arnoux, NORMA etc.)
- > 20 years of experience in the Power & Power Quality markets
- > 20 years in hardware and software development (Samsung, LG, etc.)

PHILOSOPHY

INNOVATION and **PARTNERSHIP** are basic elements in our companies philosophy.

- > Together with strong partners, our goal is to provide the best available technology for our clients.
- > Each project should build a long-term relationship between our clients and NEO Messtechnik
- > Research and Development is driven by a deep understanding of our customers needs
- > We believe in the continuous investment of Research & Development

OUR COMMITMENT

- > Innovative products with the highest quality
- > Deep technical expertise
- > Knowledgeable sales and support team

COMPANY COLORS

We combine **TRADITION** with **INNOVATION**. Therefore we have chosen the company colors based on early measurement instruments like of NORMA Vienna. These instruments were known for their high quality and precision. The color yellow combines the elements of brass, copper and varnished wood that were used in these instruments. This color is our symbol for combining **old values with young ideas**.

SERVICE & **SUPPORT**

FREE SUPPORT HOTLINE

Customer orientation is our promise. Therefore we offer a free support hotline. In addition, we offer maintenance contracts for projects with extended services for our customers like defined reaction times, spare part availability, etc.

support@neo-messtechnik.com

TRAINING

While designing the user interface of our products, our goal was to make it user friendly and intuitive as possible. Nevertheless we offer various training possibilities, see Chapter "Measurement Services".

SERVICE AND REPAIR

The NEO Messtechnik can provide service and repairs for any of our products. Long-spare part availability and Upgrade options is one of our contributions to ensure low-resource usage. For information regarding service and repairs please contact your local distributor first or NEO Messtechnik directly.

WARRANTY EXTENSION

Our HIGH QUALITY allows us to provide an EXTENDED WARRANTY.

Neo only uses high quality components which have been used for some of the most-demanding applications worldwide. All components are internationally recognized brands which are also audited regularly. Neo provides one of the best warranties in the business. The 2 year warranty not only applies to the OEM instrument but also to sensors and accessories. This included warranty can be extended and on-site warranty services can be provided.

ACCESSORIES

20

ABOUT NEO SERVICES

INTRODUCTION

POWER QUALITY MONITORS

PQ SYSTEM SOFTWARE

PHOTOVOLTAIC TESTING

ACCESSORIES

SERVICES & ABOUT NEO

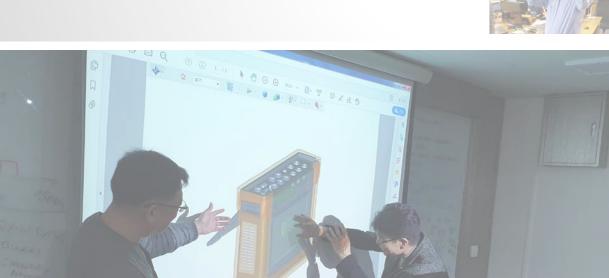
Selecting the best available components for our instruments allows to provide our customers with an extended warranty for our products. In addition, all instruments are rigorously tested (thermal tests, shock & vibration, aging, drop tests, long-term tests, performance tests, etc.)

QUALITY

Overvoltages from power lines down to factories can be higher than normal operating voltages. To avoid any kind of electrical accident, NEO Messtechnik emphasizes the importance of a safe instrument design. For example, the high-voltage inputs of the PQA 8000 instrument (CAT IV 600V) are isolated up to 6kVp while maintaining high precision (0.05%) and high sampling (up to 1MS/s).

COMPLIANCE WITH INTERNATIONAL STANDARDS

All instruments are designed according to international standards for electrical safety and compatibility. Among others, all products comply with these standards: LVD Directive 2014 / EMC Directive 2014 / Rohs Directive 2015 EN 61000-3-2 / EN 61000-3-3 / EN 61326-1 / EN 55011 +A1, Class A


LATEST TECHNOLOGY

It is important to us to continuously adapt to the latest technologies. Right now we are participating in research projects for Virtual Reality, Artificial Intelligence for electrical equipment condition monitoring and others.

LEADING IN SAFETY

HIGHEST QUALITY

This is world-leading technology.

SOCIETY & ENVIRONMENTAL

"We want to create an environment where every employee maximizes their skills and contributes to society. This philosophy is the backbone for everything we do."

SILVER AGER PROGRAM

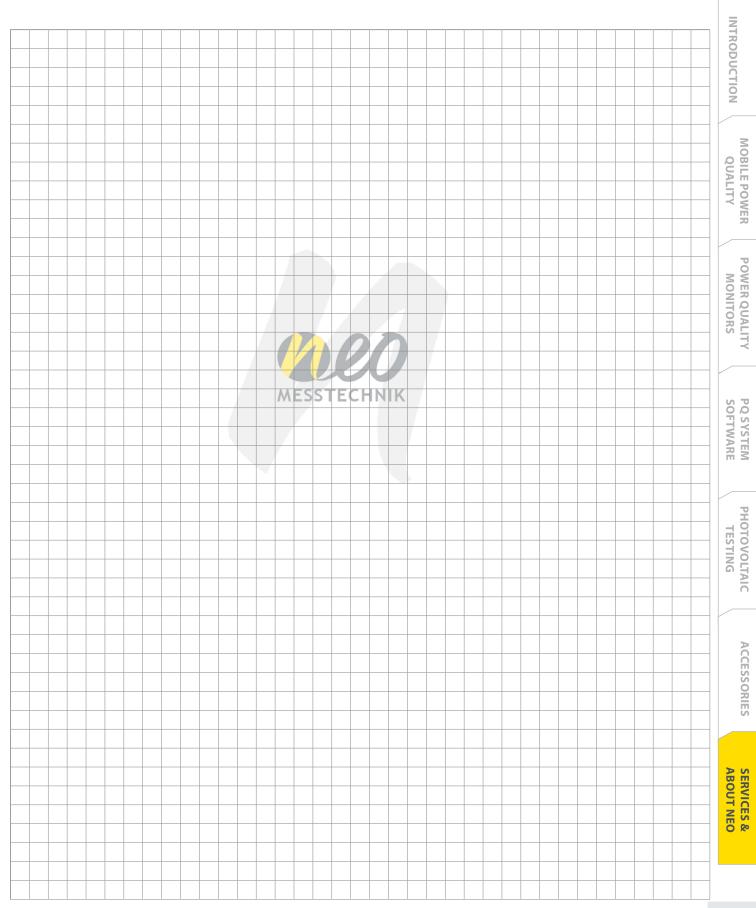
In both the Austrian and Switzerland offices, retired people are working for NEO Messtechnik part time. We value the deep knowledge of our "Silver Agers" and want to give them the chance to actively participate. Activities include Service & Repair of instruments, organizational tasks or hardware development. Our "Silver Agers" can define their working hours and working environment themselves.

SOCIAL RESPONSIBILITY

NEO Messtechnik contributes to social community and environmental conservation programs.

- > Support of disabled people (cooperation with Behindertenintegrationswerkstätte Ternitz)
- > Support of the Dreamivil project in Ghana (dreamivill.com)
- > Support of tree planting projects (clickatree.com)

ENVIRONMENTAL IMPACT


- > NEO Messtechnik guarantees long product life cycles, spare part availability and repair services to ensure low resource usage.
- > Among others NEO products support the integration of renewable and environmental friendly power sources and also help to promote energy savings.

MONITORS

CONTACT

AUSTRIA

NEO Messtechnik GmbH Sonnweg 4 2871 Zöbern +43 2642 20 301 sales@neo-messtechnik.com

SWITZERLAND

SCHOTEC AG Moosacherstrasse 15 CH-8804 Au Telefon: +41 44 727 75 50 info@schotec.ch

www.neo-messtechnik.com

SOUTH KOREA

NEOMEZ Co. Ltd (14056) 282 Hagui-ro, Dongan-gu, Anyang-si, Gyeonggi-do Tel: (+82-31) 421 4281 neo@neomez.com www.neomez.com

CHINA

Beijing Dewetech Co., Ltd. Room B-1001, Building #5, No.16, Bai Zi Wan Road, Chaoyang District, Beijing 100124, PRC. Tel: (+86-10) 87732628; 87748695 E-mail: sales@dewe-tech.cn www.dewe-tech.cn

